

REPORT TO HEALTH INFRASTRUCTURE

ON GEOTECHNICAL INVESTIGATION

FOR MUSWELLBROOK HOSPITAL REDEVELOPMENT STAGE 3

AT BRENTWOOD STREET, MUSWELLBROOK, NSW

Date: 25 August 2022 Ref: 34804LFrpt2

JKGeotechnics www.jkgeotechnics.com.au

T: +61 2 9888 5000 JK Geotechnics Pty Ltd ABN 17 003 550 801

Report prepared by:

10

Owen Fraser Associate | Geotechnical Engineer

Report reviewed by:

Paul Stubbs Principal | Geotechnical Engineer

For and on behalf of JK GEOTECHNICS PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
34804LFrpt2 Draft	Draft Report for Comment	2 August 2022
34804LFrpt	Final Report	25 August 2022

© Document copyright of JK Geotechnics

This report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JKG) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKG and its Client and is therefore subject to:

- a) JKG's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKG;
- c) The terms of contract between JKG and the Client, including terms limiting the liability of JKG.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKG which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKG does so entirely at their own risk and to the fullest extent permitted by law, JKG accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

At the Company's discretion, JKG may send a paper copy of this report for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence. The USER shall ascertain the accuracy and the suitability of this information for the purpose intended; reasonable effort is made at the time of assembling this information to ensure its integrity. The recipient is not authorised to modify the content of the information supplied without the prior written consent of JKG.

Table of Contents

1	INTRO	DDUCTION	1
2	INVES	STIGATION PROCEDURE	1
3	RESU	LTS OF INVESTIGATION	3
	3.1	Site Description	3
	3.2	Subsurface Conditions	3
	3.3	Laboratory Test Results	5
4	сомг	MENTS AND RECOMMENDATIONS	6
	4.1	Site Preparation	6
	4.2	Footings	7
	4.3	Mine Subsidence	10
	4.4	Earthquake Design Classification	15
	4.5	Retaining Walls	15
	4.6	Subgrade Preparation	16
		4.6.1 Subgrade Preparation	16
		4.6.2 Engineered Fill	17
	4.7	Pavement Design	17
	4.8	Further Geotechnical Input	18
5	GENE	RAL COMMENTS	18

ATTACHMENTS

STS Table A: Moisture Content, Atterberg Limits & Linear Shrinkage Test Report STS Table B: Four Day Soaked California Bearing Ratio Test Report **STS Table C: Shrink-Swell Test Report Table D: Point Load Strength Index Test Report Envirolab Services Certificate of Analysis No. 300005** Table 1: Summary of Pillar Stability Calculations and Factor of Safety Borehole Logs 1 to 6 Inclusive (With Core Photographs) **Dynamic Cone Penetration Test Results Sheet(s) Figure 1: Site Location Plan** Figure 2: Borehole Location Plan Figure 3: Section A-A Figure 4: Section B-B **Figure 5: Mine Subsidence Assessment Vibration Emission Design Goals Report Explanation Notes** Appendix A: Coffey Borehole Logs and Downhole Imagery

1 INTRODUCTION

This report presents the results of a geotechnical investigation for the proposed Muswellbrook Hospital Redevelopment – Stage 3 at Brentwood Street, Muswellbrook, NSW. The location of the site is shown in Figure 1. JK Geotechnics previously prepared a desktop assessment report, Ref: 34804LFrpt, dated 2 May 2022.

We understand from the supplied preliminary architectural drawings prepared by DWP (Project No. 21-0338, Dwg. AR_MW_A1040, Issue A dated 15 July 2022) that it is proposed to demolish the existing Weidman Building and construct a new two storey in-patient unit (IPU). The existing lower ground floor of the Surgery building immediately south of the proposed IPU will undergo alterations and additions, including construction of a slab-on-ground over the existing, currently vacant, lower ground floor. It is understood the new inpatient unit will be constructed at existing grade and therefore minimal excavation or filling is expected to be required. We expect structural loads typical for a structure of this type.

We have been provided a report prepared by Coffey Geotechnics Pty Ltd (Coffey) for the Stage 2 works (Ref: GEOTWARA22658AA-AC dated 17 December 2015) comprising of cored boreholes. A supplementary mine subsidence investigation report prepared by Coffey was also provided (Ref: GEOTWARA22658AA-AG dated 3 August 2016)

The purpose of the investigation was to obtain geotechnical information on the subsurface conditions, and to use this as a basis for providing comments and recommendations on site preparation, retention systems, footings, mine subsidence, pavement design parameters, subgrade preparation and engineered fill.

This geotechnical investigation was carried out in conjunction with a detailed (Stage 2) site investigation by our environmental division, JK Environments (JKE). Reference should be made to the separate report by JKE, Ref: E34804PTrpt2, for the results of the detailed environmental investigation.

2 INVESTIGATION PROCEDURE

The fieldwork for the investigation was carried out on 27 June 2022 to 30 June 2022 and comprised six boreholes drilled with our truck mounted JK400 drilling rig. The boreholes were drilled to depths between 3.10m and 13.0m below existing surface levels using spiral auger techniques and a Tungsten Carbide ('TC') bit. Three of the boreholes (BH1, BH4 and BH6) were then extended to depths ranging from 10.50m to 13.41m using an NMLC triple tube barrel fitted with a diamond coring bit and water flush. The original scope of work required the drilling of cored boreholes to a maximum 10m depth. However, the scope was adjusted whilst on-site resulting in fewer cored boreholes due to deeper drilling being required as a result of the presence of poor quality bedrock. Attempts to reach better quality bedrock that was consistently of at least low strength were unsuccessful within the borehole termination depths.

The strength of the subsurface soils was assessed from Standard Penetration Test (SPT) 'N' values augmented by hand penetrometer tests on the SPT split tube samples. The strength of the bedrock was assessed by

observation of the auger penetration resistance using a tungsten carbide 'TC' drill bit, together with examination of the recovered rock cuttings and from correlations with subsequent moisture content test results on recovered rock chips. It should be noted that strengths assessed in this way are approximate and variances of one strength order should not be unexpected.

Dynamic Cone Penetration (DCP) tests were carried out within the existing lower ground floor of the surgery building extending to refusal or termination depths of 0.05m to 1.6m below existing surface levels. The refusal depth of the DCP tests may provide an indicative depth to rock, though we note that premature refusal can also occur on obstructions in the fill, 'floaters' and other hard layers, such as the existing gravel layer present across the area.

Selected samples were tested by Soil Test Services (STS), a NATA accredited laboratory, to determine California Bearing Ratio (CBR) values, shrink-swell index, moisture contents, Atterberg limits, and linear shrinkage. The results are summarised in the attached Tables A to C. Selected samples were also sent to Envirolab Services Pty Ltd to determine pH, sulphate, chloride and resistivity values. The results are summarised in the attached fables No. 300005.

Where bedrock was diamond cored, the recovered core was returned to our laboratory for photographing and Point Load Strength Index (Is_{50}) testing. The results are plotted on the borehole logs and presented on the attached Table D. Using established correlations the Unconfined Compressive Strength (UCS) of the bedrock was then calculated from the Is_{50} results. Copies of the colour photographs are provided with the borehole logs.

Groundwater observations were made in the boreholes during and on completion of drilling and at the end of the field work. We note that water is introduced into the borehole during coring and therefore the water levels measured at completion of coring may be artificially high as the water levels have not had time to stabilise. In BH1, BH5 and BH6, Class 18 machine slotted PVC standpipes were installed and finished with a cast iron gatic cover to allow longer term groundwater monitoring to be completed. Our environmental division., JK Environments, measured the groundwater levels within the wells on 1 July 2022. No further groundwater monitoring was carried out as was outside the scope of works.

The fieldwork was completed in the full-time presence of our geotechnical engineer who set out the borehole locations, nominated the testing and sampling, and prepared the attached borehole logs and DCP sheets. The borehole locations are shown on the attached Figure 2, and these were set out by a differential GPS unit, which also provided the relative levels shown on the attached logs. The height datum used is the Australian Height Datum (AHD). For more details of the investigation procedures and their limitations and a glossary of terms and symbols used, reference should be made to the attached Report Explanation Notes.

We also reviewed previous geotechnical reports by Coffey, as detailed in Section 1 and have incorporated the relevant information into this report. The relevant borehole logs have been included as Appendix A to this report.

3 RESULTS OF INVESTIGATION

3.1 Site Description

The site is located in the western half of the wider hospital property, which itself is located in a mixed use (medical and residential) area of Muswellbrook. Possum Gully (a creek) is located approximately 20m to the north of the site within the wider hospital property.

The regional topography is characterised by undulating topography generally sloping down to the east towards the Hunter River. The site is located mid-slope on a western facing slope with a gentle slope towards the west at approximately 1° to 3°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

At the time of the inspection, the subject area comprised a road/driveway in the eastern portion and a carpark in the western portion. There were no buildings or structures over the subject area.

During the site inspection, we observed the following land uses in the immediate surrounds:

- North wider hospital property including Possum Gully (detention basin) with residential properties and a cemetery beyond Bowman and Doyle Streets;
- South wider hospital property and a childcare centre with residential properties beyond Brentwood Street;
- East wider hospital property including the main hospital buildings and residential properties beyond; and
- West wider hospital property including the helipad, with residential properties beyond Doyle Street.

The DBYD plans indicated that a sewer main extends through the central section of the site in an east-west direction. The sewer is likely to be at a depth of approximately 2.5m to 3m below ground and is also noted to extend through the majority of the main hospital site.

3.2 Subsurface Conditions

The Geological Map of Singleton indicates the site is located within the Branxton Formation comprising of mudstone, sandstone and conglomerate. The geological maps do not take into consideration past earthworks at the site.

Based on our available information, including relevant boreholes contained in the Coffey report , the subsurface conditions generally comprise of fill overlying residual clay and then sandstone bedrock. No groundwater was encountered during drilling; however it was measured at relatively shallow depths a short time following completion of the investigation. The following provides a summary of the subsurface conditions encountered. Reference should be made to the attached boreholes logs, including the relevant boreholes logs by Coffey in Appendix A.

Pavement and Fill

In BH4, concrete pavement of 80mm thickness was encountered at surface level.

Fill was encountered in all boreholes from the either the surface, or from below the pavement (in BH4) and extended to depths ranging from 0.3m to 1.5m. The fill was predominantly clayey fill, with the exception of BH6, and contained varying amounts of sands, gravels and other potentially deleterious materials, such as root fibres and slag. The fill in BH6 comprised of silty sand and contained slag inclusions. Based on the limited SPT 'N' values, the fill was of variable compaction, but predominantly appeared to be poorly to moderately compacted.

The Coffey boreholes were drilled in 2015 since when the site conditions have changed and therefore the topsoil and limited fill depth encountered in the boreholes would no longer be relevant.

Residual Clay

Residual silty clay was encountered in all boreholes, including the Coffey boreholes, below the fill and was assessed to be of medium to high plasticity and generally of very stiff to hard strength. The moisture content of the clays were typically greater than the plastic limit, although occasionally was equal to or less than the plastic limit.

Weathered Bedrock

Weathered bedrock was encountered below the residual clay in all boreholes at depths ranging from 0.6m to 9.5m below existing surface levels. The level of the surface of the rock ranged from RL174.2m to RL181.1m indicating that whilst bedrock is generally grading down from the south-east there seems to be a gentle ridge line, albeit highly weathered, in proximity to BH3 and BH15-3.

Generally, the upper bedrock comprised extremely weathered siltstone and sandstone, that graded into very low to low strength sandstone. Siltstone of very low to low strength was then encountered at depths between 8.0m and 11.2m within BH1, BH2, BH3, BH5 and BH6. The sandstone and siltstone bedrock also contained occasional bands of very high strength bedrock typically less than 300mm thick.

We have classified the rock in general accordance with Pells et al "Classification of Sandstones and Shales in the Sydney Region: A Forty Year Review", Australian Geomechanics, June 2019. Table 1 provides the depths and levels where each class of rock was encountered in each borehole.

	Depth and Level To the Start of Each Rock Class					
ВН	Class V	' Rock	Class I	V Rock		
	Depth (m)	RL (mAHD)	Depth (m)	RL (mAHD)		
1	1.8	177.3	3.4	175.7		
2*	6.6	174.4	10.0	171.0		

Table 1: Showing Assesse	d Rock Classification
--------------------------	-----------------------

	Depth and Level To the Start of Each Rock Class					
вн	Class V	/ Rock	Class I	V Rock		
	Depth RL (m) (mAHD)		Depth (m)	RL (mAHD)		
3*	0.6	181.1	5.5	176.2		
4*	6.2	177.7	8.3	175.6		
5*	-	-	9.5	175.2		
6	4.2	175.2	6.4	173.0		
15-1	1.3	177.3	4.0	174.6		
15-2	1.8	177.9	3.0	176.7		
15-3	1.5	179.7	4.2	177.0		

Note: * Assessment based upon auger drilling only. No core samples obtained and therefore considered an estimate only.

Groundwater

Groundwater seepage was encountered during auger drilling in BH2 and BH4 at 5.5m and 4.8m depth, respectively. No groundwater seepage was encountered in the remaining boreholes during auger drilling. The following groundwater measurements were taken by JK Environments on 1 July 2022 within the standpipes installed into the boreholes:

Borehole	Standing Water Level Depth (m)	Standing Water Level (mAHD)
1	2.84	176.3
5	1.80	182.9
6	2.07	177.4

The groundwater monitoring indicates a groundwater gradient towards the west. The groundwater surface was within the weathered bedrock in BH1 and within the soils in BH5 and BH6.

3.3 Laboratory Test Results

Based on the shrink-swell, Atterberg limits and linear shrinkage test results, the clayey fill and residual silty clay are of medium to high plasticity. The moisture content test results on samples of the weathered rock recovered from the augered portions of the boreholes showed reasonably good correlation with our field assessment of rock strengths. Reference should be made to the attached STS Tables A and C for further details.

The four day soaked CBR tests on a samples of the clayey fill and residual clay from compacted to 98% of their Standard Maximum Dry Density (SMDD) returned CBR values of 5% and 6% for the clayey fill and 3.5% and 4.0% for the residual clay. Reference should be made to the attached STS Table B for further details.

The results of the point load strength index tests on the recovered rock core correlated well with our field assessments of rock strength. The results indicate a typical Unconfined Compressive Strength (UCS) between 2MPa and 6MPa, although high UCS values up to 216MPa were also achieved in the bands of very high strength bedrock present within the cores. Reference should be made to the attached Table D for further details.

The following table summarises the soil chemistry test results from Envirolab Services. Reference should be made to the attached Certificate of Analysis No. 300005 for further details.

Sample	Soil Type	рН	Chloride mg/kg	Sulphate mg/kg	Resistivity ohm.cm
BH1 1.2-1.4m	Silty Clay	6.3	260	250	2,600
BH2 1.5-1.95m	Silty Clay	8.9	880	370	1,000
BH2 5.6-5.9m	Silty Clay	9.4	640	150	1,500
BH3 3.2-3.5m	Sandstone	9.7	100	46	3,800
BH3 7.2-7.5m	Sandstone	9.2	510	220	1,600
BH4 3.0-3.45m	Sandy Clay	9.4	180	100	2,400
BH5 0.5-0.95m	Fill: Silty Clay	8.3	<10	26	6,300
BH5 4.5-4.95	Sandy Clay	9.1	37	20	9,600
BH6 1.5-1.95	Silty Clay	8.8	20	34	9,000

4 COMMENTS AND RECOMMENDATIONS

4.1 Site Preparation

Prior to any excavation commencing we recommend that reference be made to the NSW Government "Code of Practice Excavation Work" dated January 2020 or the most recent version at the time of works commencing.

Site preparation is expected to comprise demolition of the existing building, removal of trees and stripping of topsoil and/or root affected soils. We also assume that partial demolition of the existing access road will also be required.

Following the above site preparation, in areas where no excavation is required, any obvious deleterious or contaminated existing fill should be removed. These stripped materials should be taken offsite as they are not suitable for re-use as engineered fill. However, from a geotechnical perspective (i.e. assuming these materials are not contaminated), existing gravelly materials present below existing pavements may be re-used as select fill provided it is separately stockpiled and inspected and approved by the geotechnical

engineers. The topsoil and/or root affected soils may also be separately stockpiled and used for subsequent landscaping purposes, or appropriately disposed off site. If the depth of topsoil is critical, then we recommend test pits are excavated to confirm the topsoil thickness. We recommend test pits in lieu of boreholes, as test pits allow a more detailed visual inspection of the soil, compared to boreholes where the soil is assessed from the drill spoil and SPT samples.

Trees dry out the surrounding clayey soils in and around their root systems. Removal of trees usually results in an increase in the soil moisture content over time, leading to swelling of the soils, which may have a detrimental impact on the performance of proposed buildings and paved surfaces founded/supported in the clayey soil profile within the site. Therefore, trees should only be removed where absolutely necessary and as soon as practicable, in order for the moisture content of the clayey subsoils to recover; ideally this would be years in advance of construction though we understand this is usually not practical.

We expect any cut and fill earthworks to be relatively minor and therefore expect to encounter fill, residual soils and extremely weathered bedrock. The soil materials and upper weathered bedrock should be readily excavated using the buckets of conventional earthmoving equipment, such as hydraulic excavators. We note the bedrock contains occasional bands of higher strength that may require the use of hydraulic impact hammers to penetrate through the band until the weaker bedrock is again encountered. Where percussive excavation equipment is used, care should be taken to prevent vibration induced damage to any nearby structures. In this regard, reference should be made to the attached Vibration Emission Design Goals for suitable vibration threshold criteria.

We recommend temporary batter slopes no steeper than 1 Vertical (V) in 1 Horizontal (H) through the clay soils and weathered bedrock.

The subgrade will comprise clay soils. The clays may be found to be unstable if proper site drainage is not implemented during construction. It is therefore important to provide good drainage in order to promote run-off and reduce ponding. Earthworks platforms should be graded to maintain cross-falls during construction. If the clays are exposed to periods of rainfall, softening may result and site trafficability will be poor. Furthermore, the soils may no longer be suitable for re-use as engineered fill or as a suitable subgrade. If softening occurs, the subgrade should be over-excavated to below the depth of moisture softening. The material removed should be replaced with engineered fill. Such work would likely cause delays to the earthworks program. Trafficability may be improved by the use of a sacrificial surface layer of crushed demolition rubble.

4.2 Footings

Due to the possibility of abnormal moisture conditions due to existing pavements and trees, we consider that the site classifies as Class 'P' in accordance with AS2870-2011 'Residential Slabs and Footings'. We note however that given the site is within a mine subsidence district footings will need to be designed in accordance with the requirements for mine subsidence. The impact of mine subsidence is discussed further in Section 4.3 below.

We expect relatively low to moderate structural loads will apply to this development, and therefore we do not expect the soils to be a suitable founding stratum. As such, we recommend the development is uniformly founded on the underlying sandstone/siltstone bedrock. Given the depth of bedrock, high level footings are unlikely to be feasible and therefore bored piles will need to be adopted. Notwithstanding, smaller ancillary structures separate from the main development may be supported by high level footings founded on the natural residual clay.

If the footings are designed to be founded below the fill on the inferred natural residual soils or weathered bedrock, consideration must still be given to the potential for the natural silty clays to shrink and swell with changes in moisture content. In our opinion, any new footings may be designed on the shrink-swell movements of the residual silty clays similar to Class 'H1' type movements will occur. We note that in the strictest sense AS2870 does not apply to development such as this, however it provides a useful guide for footing design on reactive clay sites. Reference may also be made to AS2870 for design, construction, performance criteria and maintenance precautions on reactive clay sites. We note that this classification does not take into account the placement of any new fill or the removal of the surface cracked zone of clay soils and therefore we recommend the above site classification is reviewed once details of the earthworks are known, primarily the type and depth of any new fill placement. If slabs are suspended between footings founded in bedrock then void formers of at least 60mm would need to be provided to separate the slab from the reactive subgrade.

The design of footings founded within the rock may be based on the following parameters. We note that the serviceability parameters given are based on settlement of less than 1% of the pile diameter or footing width. The ultimate parameters may be used with limit state design methodology on the understanding that detailed settlement analysis of footings must also be carried out to assess likely settlements under these higher pressures. We note that the use of ultimate pressures can produce settlements up to 5% of the pile diameter or footing width. Differential settlements of about half the total settlements would be expected. The designer may use the modulus values given below to estimate the settlements of particular footings.

Rock Class	Allowable End Bearing Pressure	Allowable Shaft Adhesion in Compression	Ultimate End Bearing Pressure	Ultimate Shaft Adhesion in Compression	Elastic Modulus
Class V	700kPa	70kPa	1,200kPa	100kPa	100MPa
Class IV	1,000kPa	100kPa	2,500kPa	150kPa	200MPa

Higher allowable end bearing pressures may be feasible, however suitable bedrock was not encountered in the boreholes. If required, we recommend additional deeper boreholes be drilled, potentially in the order of at least 20m depth, to confirm whether higher bearing pressures are possible. This scope may need to be amended depending on advice obtained from Subsidence Advisory NSW and the known mine workings present below the site, as discussed further below in Section 4.3.

Consideration could also be given to design of footings based on limit state design analysis procedures and the above ultimate values can be adopted. Ultimate values must be used in conjunction with an appropriate geotechnical strength reduction factor (ϕ_g) which must be calculated in accordance with the methodology

outlined in AS2159-2009 '*Piling Design and Installation*'. It is not possible at this stage to accurately determine the geotechnical strength factor as we have no knowledge of the design and installation factors. However, as a guide we have estimated the Average Risk Rating (ARR) and geotechnical strength reduction factor based on the following assumptions:

- The designer has extensive experience with similar foundations in similar geological conditions.
- The design method adopted is well established and soundly based.
- The method for utilising results of in-situ test data and installation data is based on indirect measurements used during installation and not calibrated to static load tests.
- There is a detailed level of construction control with professional geotechnical supervision and construction processes that are well established and relatively straightforward are adopted.
- No monitoring of the structure after construction will be undertaken.

Based on the above assumptions and our geotechnical knowledge, we estimate an ARR of 2.93 in accordance with Equation 4.3.2 and Table 4.3.2(A) of AS2159-2009. Accordingly, the overall risk category is Low to Moderate, resulting in a geotechnical strength reduction factor of 0.52 for low redundancy systems and 0.60 for high redundancy systems, in accordance with Table 4.3.2(C) of AS2159-2009. The use of ultimate values will result in higher settlements. Therefore, specific analysis of the footing settlements must be carried out to confirm that the structure will still perform satisfactorily.

Where footings are founded within Class V or Class IV Rock, we consider that at least the initial stages of footing excavation should be inspected by a geotechnical engineer to confirm that a suitable founding stratum has been achieved. The requirements for further inspections can be decided at that time, and the frequency will depend on the level of 'sign-off' required.

Based on the soil aggressivity testing, the soils and weathered rock would be classified as having a 'Non-aggressive' exposure classification for concrete piles in accordance with Table 6.4.2(c) of AS2159-2009 'Piling – Design and Installation'. For steel piles, the soils would be classified as 'Mild' in accordance with Table 6.5.2(c) of AS2159-2009.

For lighter loaded footings, high level footings, such as stiffened raft slabs, strip or pad footings founded on natural residual clay of at least very stiff strength may be designed based on a preliminary ABP of 150kPa. If shallow weathered bedrock is encountered, then a higher ABP of 600kPa may be adopted, however if encountered then all footings must be similarly founded on the weathered bedrock to avoid potential damage as a result of differential settlements.

Subgrade preparation recommendations below stiffened raft slabs are provided in Section 4.6. The designer should also note that there are some trees and pavements at the site and that these will affect the performance of footings on clay soils. A potential 'abnormal moisture condition' may exist where the trees and pavements are to be removed or increase substantially and consideration must be given to this in the design.

For the proposed lower ground slab-on-ground within the existing undercroft of the Surgery building, the existing subgrade comprises a gravelly fill, that appears to be DGB20 (or similar). Unfortunately the DCP testing was limited due to premature refusal within the gravelly fill, although the DCP tests that were able to penetrate the gravel indicate reasonably 'stiff' soils. Based on the limited testing, we consider the existing gravelly subgrade will likely be suitable for re-use, however we recommend the subgrade is proof rolled under a heavy smooth drum roller of at least 10 tonnes in non-vibratory mode to assess the presence of any loose or heaving subgrade. If any areas are detected, the material should be excavated down to a sound base and replaced with engineered fill. If there are concerns regarding damage to existing ground beams by the roller then lightweight compaction equipment can be adopted to prevent damage, however we recommend limiting to no less than 3 tonnes if possible.

4.3 Mine Subsidence

The comments and recommendations above for footings are made on the basis of typical geotechnical parameters. However, the site has been identified to be within the Muswellbrook mine subsidence district as a result of underground mining operations which may govern the footing systems. The NSW Government Subsidence Advisory (SA NSW) (formerly Mine Subsidence Board) provide general advice on designing for different subsidence parameters, such as vertical settlements, horizontal strain, tilt, etc. In this instance, Guideline 2 applies to the local area for potential subsidence risk of non-active mine workings, where the risk of damage due to trough subsidence applies. We note however that given the Guideline does not address a development of this type, the development will need to be assessed by SA NSW risk engineers on merit. To assist with such assessment we have carried out a risk assessment and calculations of parameters for structural design.

The site is underlain by abandoned coal mine workings in the No. 2 (St Heliers) Seam of the Muswellbrook Colliery at a depth of about 112m. Mining was performed in the late 1950's and early 1960's using room and pillar methods. In 2016, at the request of SA NSW, Coffey Geotechnics undertook further investigations as part of the Stage 2 development of the Hospital comprising two deep boreholes drilled into the mine workings with one coring the immediate 12m of roof rock. The borehole locations were strategically chosen at the intersection of two headings. After drilling the boreholes, an acoustic televiewer (ATV) was used to confirm conditions encountered during drilling, where notes within the open hole drilling are based on ATV footage. Given the close proximity of these deep boreholes to the current development and that they have been drilled within the same mine working present below the current Stage 3 development, we consider these boreholes to be representative of the mine workings relevant to Stage 3. Reference should be made to Appendix A which contains the Coffey borehole logs and ATV results.

The stability of selected pillars was assessed using rectangular pillar theories incorporated in the modified UNSW Power Law as presented in Galvin et al (1998) to estimate the Factor of Safety (FOS) of pillars and estimate the likelihood of subsidence occurring. A credible subsidence profile was then determined based on the collapse of a panel of workings developed from the theory of long wall mining for larger panel crushes and adapted to room and pillar methods.

As discussed in Section 3.2, the geological map indicates the geology below the site belongs to the Branxton Formation comprising mudstone, sandstone and conglomerate. The Branxton Formation overlies the Greta Coal Measure, which we understand outcrops under the eastern portion of the Muswellbrook Hospital complex. Based on a historical borehole, Bore 88 as shown below, a number of coal seams have been identified comprising:

- Greta Coal Seam
- Top Seam (Muswellbrook) Rowan Formation
- No. 2 Seam (Fleming and St Heliers) Rowan Formation
- No. 3 Seam (Lewis) Skeletar Formation

Based on historical records and confirmed by the deep boreholes/ATV by Coffey, only No.2 Seam has been mined below the site, with the other seams being mined beyond the site and therefore do not apply.

The deep boreholes by Coffey encountered void heights, i.e. pillar height, of 3.3m and 2.3m in BH16-01 and BH16-03, respectively. The coal cored above the void in BH-16-01 was determined to be relatively dull and

free from face cleats indicating a high silt percentage and therefore unlikely to have been mined elsewhere in the area indicating the void heights are representative of the heights in the general area. Furthermore, since completion of mining, the workings have been allowed to fill with water with the stationary water height in the boreholes determined to be at depths of 16.0m and 15.1m for BH16-01 and BH16-03, respectively.

Based on the Coffey report, we understand that the immediate roof of the workings comprises approximately 4m of coal in both boreholes. The core sample of this coal in BH16-01 was relatively dull with a Point Load Strength Index, I_{S50}, between 0.3MPa and 1.6MPa equating to an Unconfined Compressive Strength (UCS) between 6MPa and 30MPa. Unfortunately the Coffey boreholes were unsuccessful at coring the floor of the workings however based on the downhole investigation, the density of the floor appears to increase, at least in BH16-03.

To assess the current stability of the pillars and determine the likelihood of a pillar failure occurring, an assessment of the pillar Factor of Safety has been carried out. The FOS of an individual pillar is the ratio of pillar strength to pillar load. In Australia, the most common method to assess coal pillars in the UNSW Pillar Design method (Galvin et al 1998). It must be noted that the method requires simplifications and therefore have limitations particularly as the approach is based on semi-empirical relationships derived from a database of failed and un-failed pillars. The method is only valid where roof and floor conditions are stable and where full pillar yield does not exist which appears to be the case of the No. 2 Seam present below the site.

The strength of the pillars can be estimated by the following:

$$S_p = 8.6 \ x \ \frac{w^{0.51}}{h^{0.84}} \ (in \ MPa)$$

Where: w is the pillar width (m) and h is the pillar height (m)

The load applied to the coal pillars is obtained by the weight of the overburden layers within the tributary area expressed as a vertical pressure applied to the top of the pillar. The tributary area is taken as the area extending midway along the bords and cuts through surrounding pillars. It must be acknowledged that only limited information is available on the mine workings and therefore it is critical for a number of sensitivity cases to be analyses to encompass the risk assessment of the workings. Consequently, on the basis of the information obtained from the deep boreholes, the following has been assessed:

- Three pillar heights have been considered; the lower and upper bound actual heights of 2.3m and 3.3 based on BH16-03 and BH16-01, respectively, and a third upper bound theoretical height of 4.5m which comprises an increased height of 1.2m on the upper bound actual height.
- For the pillar plan dimensions we have adopted the actual dimensions as shown, as well as a dimension 1m less to assess potential robbing of the pillars.
- We have considered a total of nine pillars as shown on the attached Figure 5 which are considered to be the pillars most critical to the Stage 3 development.

• For the overburden pressure, we have adopted two states consisting of a 'dry' state which would be equivalent to the state during mining and a second 'flooded' state representing current conditions.

The above cases are considered to encompass the likely conditions of the mine workings. The results of the assessment are presented in the attached Table 1 'Summary of Pillar Stability Calculations and Factor of Safety'. The condition most appropriate for current conditions is the case where the pillar height is 3.3m and 'flooded', although for the longer term consideration could also be given to where the pillars have been robbed by 1m. As such, the FOS varied between 2.2 and 4.7.

The pillars present below the Stage 3 development are relatively orthogonal however the tributary loading should still be considered an estimate only. Given the assumptions and estimations, an assessment on the likelihood of failure is difficult. However, Galvin (1998) provides guidance whereby a minimum FOS of 2.2 for the likely pillar case results in an estimated likelihood of failure is less than 1:100,000 which would be considered to be 'Rare' and therefore 'Acceptable' in accordance with the Australian Geomechanics Society (AGS 2007c) '*Practice Note Guidelines for Landslide Risk Management*' which provides guidelines for risk assessment, that we consider applicable to also assessing the risk of failure of the mine workings. Whilst the likelihood is rare, it is still prudent to design the proposed structure to withstand potential mine subsidence if a pillar or panel failure were to occur forming a subsidence trough.

The potential subsidence trough has been estimated based upon empirical charts developed by L. Holla (1987) presented in *'Surface Subsidence Prediction in the Newcastle Coalfield'* for estimating subsidence over longwall panels. It must be noted that the mine workings below our site comprise pillar and panel methods and therefore in the subsidence estimation the ratio of pillars to mine area has been considered.

Whilst the FOS assessment essentially determined that a failure is considered to be a rare event, in order to assess the subsidence parameters for the site, an assumed failed panel of workings and trough subsidence profile has been adopted. We considered two potential failed panel workings of approximately 74m and 85m in width, which results in a width to depth ratio of 0.66 and 0.76, respectively. Strains and tilt are directly proportional to the maximum subsidence and inversely proportional to the cover depth, where the appropriate constants of proportionality are obtained from Figures 10, 11 and 13 in Holla (1987). Based on the assessment, we estimate the following parameters:

- Maximum subsidence of 150mm.
- Maximum tensile strain of 1.2mm/m.
- Maximum compressive strain of 3.1mm/m.
- Maximum tilt of 2.9mm/m.

The following image of the trough subsidence characteristics is taken from Figure 6 of Holla (1987), where the left half of the profile are the vertical components and the right half of the profile the horizontal components:

From the above image, the following can be understood:

- The maximum tilt will occur at the boundary between the tensile and compressive strains.
- At the inflection point between the maximum tensile and compressive strains, the subsidence will be approximately half the maximum subsidence. The position of the inflection point is determined from Figure 12 of Holla (1987) and is estimated at about 17m from centre of panel.
- The subsidence will be reduced at the point at which the maximum tensile and compressive strains occur however is difficult to quantify with any confidence.
- The above is an idealisation only and in reality subsidence profiles will form different shapes depending on the failure mechanism, the type of mine workings, the presence of faults, dykes, etc.

In mine subsidence areas it is important for structures to be designed as "flexible" to accommodate the potential differential settlements that may occur as a result of trough subsidence. Typically the most effective design will minimise the magnitude of the horizontal forces and the eccentricity of those forces on the building. This could be achieved by:

- Reducing the magnitude of the passive earth pressures acting on the building by allowing elements in the ground to move with the ground or by allowing the ground to move relative to elements in the ground without developing significant passive forces. For suspended slabs on piles, this could be achieved by sliding joints at the top of piles. For slab-on-ground, this could be achieved by the presence of a sliding layer below the slab and a stepped control joint.
- Minimising the frictional forces between the ground (or elements in the ground) and the structure by either a provision of a sliding layer between the building and the ground/elements in the ground or dividing the building into sections and thereby reducing the overall weight of each section and hence the frictional forces.
- Allowance could be made to relevel floors by slab jacking or relevelling pours.

Notwithstanding all of the above, we recommend the above assessment is reviewed and the subsidence parameters confirmed by SA NSW.

4.4 Earthquake Design Classification

Based upon AS1170.4-2007 "Structural Design Actions, Part 4: Earthquake Actions in Australia", the following design parameters may be adopted:

- Hazard Factor (Z) = 0.09;
- Class C_e Shallow soil site

4.5 Retaining Walls

If space allows, permanent batters may be formed at no steeper than 1 Vertical to 3 Horizontal. The batters should also be vegetated to prevent erosion.

If space does not allow for permanent batters, then for the limited retention heights expected, cantilevered gravity type retaining walls may be adopted. For any cantilevered gravity type retaining walls supporting soil materials (if required and assuming they are set-back sufficient distance from the site boundaries or adjoining structures and services), we recommend that walls be designed on the basis of an 'active' earth pressure coefficient (K_a) of 0.35 where some wall movements are tolerable and assuming a horizontal backfill surface. If retaining walls are temporarily propped, backfilled and permanently supported by the structure, or if wall movements need to be reduced, then an 'at rest' earth pressure coefficient (K_o) of 0.55 should be adopted. A bulk unit weight of 20kN/m³ should be adopted for the soil profile. Surcharge loads (e.g. nearby footings, compaction stresses, sloping retained surfaces, construction loads etc) should be allowed for in the design using the appropriate above earth pressure coefficient. The retaining walls should be designed as drained, otherwise hydrostatic pressures would be in addition to the above earth pressures.

Any backfill behind retaining walls should comprise engineered fill in order to reduce post construction settlements. We note that compaction of engineered fill behind retaining walls is very difficult and time consuming to carry out effectively, and it is inevitable that even with good quality control and compaction that some post construction settlements will occur. Post construction settlements can cause adverse impacts on paving, landscaped retaining walls or other structures and services founded on or within the backfill. If potential post construction settlements are deemed problematic by the designers, then we recommend that further geotechnical advice be obtained. However, due to the limited space that may be available behind the walls, our preference for backfill behind retaining walls is to backfill using a single sized durable gravel, such as 'blue metal' or crushed concrete gravel (free of fines). These granular materials do not require significant compactive effort and provide better long term performance in regard to settlement than soil materials. A non-woven geotextile filter fabric should be placed over the cut faces prior to backfilling and then over the top surface of the gravel in order to reduce subsoil erosion. A clay capping layer should be provided above the free draining backfill material to reduce the likelihood of surface water entering the backfill and surcharging the retaining walls.

4.6 Subgrade Preparation

Earthworks recommendations provided in this report should be complemented by reference to AS3798.

4.6.1 Subgrade Preparation

If the floor slabs are proposed to be fully suspended on the piled footings, then no particular subgrade preparation would be necessary other than stripping all root-affected or deleterious topsoil/fill. However, based on the reactivity of the clay soils, as discussed above, we recommend the use of void formers at least 60mm thick under the building floor slabs to separate the slab from the subgrade. Further advice in this regard can be provided once details of the footing system and site earthworks (cut and fill) are known.

Recommendations for subgrade preparation below stiffened raft slabs and slabs on ground are outlined below. Slab-on-ground (other than stiffened raft slabs) should also be constructed separate from the footings of the building (i.e. designed as 'floating').

- 1. All root affected or deleterious fill or topsoil must be removed; there may be an extensive zone of root affected soil where trees have been removed. These stripped materials should be taken off site as they are not suitable for reuse as engineered fill. Where depressions result from stripping, they may be infilled with inert well-graded granular fill such as crushed sandstone, placed and compacted in layers as engineered fill.
- 2. Where existing uncontrolled fill is present and the proposed building will be formed over areas of existing fill, then the existing fill must be excavated to the natural subgrade. We recommend excavation of the fill extend at least 1m beyond the building footprint.
- 3. Following the above, the entire subgrade should be proof rolled with at least 6 passes of an at least 8 tonne smooth drum roller used in static or non-vibratory mode of operation. The purpose of the proof rolling is to detect any soft or heaving areas.
- 4. The final pass of proof rolling should be undertaken in the presence of an experienced geotechnician or geotechnical engineer, to detect any unstable or soft subgrade areas, and to allow for some further improvement in strength/compaction. Care should be taken not to over-compact clayey subgrade areas.
- 5. If dry conditions prevail at the time of construction, the clay subgrade may become desiccated or have shrinkage cracks prior to pouring any concrete slabs. If this occurs then the subgrade must be watered and rolled until the cracks disappear. This should be completed immediately prior to pouring concrete.
- 6. Unstable subgrade detected during proof rolling should be locally excavated down to a stiff or sound base and replaced with engineered fill or further advice from the geotechnical engineers should be sought. Any fill placed to raise site levels should also be engineered fill. From the borehole results we expect few, if any, unstable subgrade areas to occur provided good site drainage is maintained and the earthworks are carried out during good weather.

4.6.2 Engineered Fill

Any fill used to backfill unstable subgrade areas, raise surface levels or backfill service trenches should be engineered fill. Materials preferred for use as engineered fill are well-graded granular materials, such as crushed sandstone, free of deleterious substances and having a maximum particle size not exceeding 75mm. Such fill should be compacted in horizontal layers not greater than 200mm loose thickness, to a minimum density of 98% of Standard Maximum Dry Density (SMDD). For backfilling confined excavations such as service trenches, a similar compaction to engineered fill should be adhered to, but if light compaction equipment is used then the layer thickness should be limited to 100mm loose thickness and with a reduced maximum particle size of 40mm for the engineered fill.

From a geotechnical perspective, the existing fill and residual clays at the site may be acceptable for re-use as engineered fill on condition that the soils used are clean (i.e. free of organics and inclusions greater than 75mm size (or 40mm size, as necessary), and free of contaminants. These clayey soils should be compacted in maximum 200mm loose layers to a density strictly between 98% and 102% of SMDD and at moisture content within 2% of their Standard Optimum Moisture Content (SOMC). All clay fill should preferably be used in the lower fill layers. Thus, the use of clay materials for engineered fill will entail more rigorous earthwork supervision and compaction control, time for possible moisture conditioning and hence, possibly a greater eventual cost for earthworks. Consideration must also be made by the building designer of the greater reactive potential of new fills comprising reactive clays as opposed to existing clayey soils, as discussed in Section 4.2 above.

Density tests should be regularly carried out on engineered fill to confirm the above specifications are achieved. Density tests should be carried out at the frequencies outlined in AS3798 (Table 8.1) for the volume of fill involved. Within the proposed building footprint and particularly if the engineered fill will be supporting structural loads, then the fill must be placed under Level 1 supervision, as defined in AS3798-2007. Areas where engineered fill will not be supporting structural loads, then a reduced Level 2 control of fill compaction may be adopted. Any areas of insufficient compaction will require reworking and retesting to confirm the required specification has been achieved. Preferably, the geotechnical testing authority (GTA) should be engaged directly on behalf of the client and not by the earthworks subcontractor.

4.7 Pavement Design

The design of new pavements will depend on subgrade preparation, subgrade drainage, the nature and composition of fill excavated or imported to the site, as well as vehicle loadings and use. Various alternative types of construction could be used for the pavements. Concrete construction would undoubtedly be the best in areas where heavy vehicles manoeuvre. Flexible pavements may have a lower initial cost but maintenance will be higher. These factors should be considered when making the final choice. We recommend that reference also be made to AS2870 for drainage and vegetation precautions on reactive clay sites.

Based on the subsurface conditions and laboratory test results, we recommend the pavements are designed based on a CBR value of 3.5% or an estimated subgrade reaction modulus (for concrete slabs or pavements)

of 25kPa/mm (750mm diameter plate). The pavement sections where imported fill is used to raise site levels, by at least 0.5m may be designed on the basis of a four-day soaked CBR value of the imported fill material.

Concrete pavements should have a sub-base layer of at least 100mm thickness of crushed rock to latest revision of Transport for NSW QA specification 3051 (2010) unbound base material (or equivalent good quality and durable fine crushed rock) which is compacted using a heavy roller to at least 100% of Standard Maximum Dry Density (SMDD). Adequate moisture conditioning to within 2% of Standard Optimum Moisture Content (MOMC) should be provided during placement so as to reduce the potential for material breakdown during compaction. Concrete pavements should be designed with an effective shear transmission of all joints by way of either doweled or keyed joints.

Careful attention to subsurface and surface drainage is required in view of the effect of moisture on the clay subgrade. The surface of the pavement and the subgrade should be sloped to shed water, and adequate subsurface drainage should be installed around the pavement to intercept and dispose of water flows. The drainage trenches should be excavated with a longitudinal fall to appropriate discharge points so as to reduce the risk of water ponding. The subsoil drainage should extend at least 0.3m below the subgrade levels.

4.8 Further Geotechnical Input

The following is a summary of the further geotechnical input which is required and which has been detailed in the preceding sections of this report:

- Additional geotechnical investigation, if deemed required.
- Review of civil and structural drawings.
- Inspection of footing excavations.
- Inspection of proof rolling soil subgrade.
- Testing of engineered fill

5 GENERAL COMMENTS

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and JK Geotechnics accept no responsibility whatsoever for the performance of the structure where recommendations are not implemented in full and properly tested, inspected and documented.

The long term successful performance of floor slabs and pavements may be dependent on the satisfactory completion of the earthworks. In order to achieve this, the quality assurance program should not be limited to routine compaction density testing only. Other critical factors associated with the earthworks may include subgrade preparation, selection of fill materials, control of moisture content and drainage, etc. The satisfactory control and assessment of these items may require judgment from an experienced engineer.

Such judgment often cannot be made by a technician who may not have formal engineering qualifications and experience. In order to identify potential problems, we recommend that a pre-construction meeting be held so that all parties involved understand the earthworks requirements and potential difficulties. This meeting should clearly define the lines of communication and responsibility.

Occasionally, the subsurface conditions between the completed boreholes may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact this office.

This report provides advice on geotechnical aspects for the proposed civil and structural design. As part of the documentation stage of this project, Contract Documents and Specifications may be prepared based on our report. However, there may be design features we are not aware of or have not commented on for a variety of reasons. The designers should satisfy themselves that all the necessary advice has been obtained. If required, we could be commissioned to review the geotechnical aspects of contract documents to confirm the intent of our recommendations has been correctly implemented.

A waste classification is required for any soil and/or bedrock excavated from the site prior to offsite disposal. Subject to the appropriate testing, material can be classified as Virgin Excavated Natural Material (VENM), Excavated Natural Material (ENM), General Solid, Restricted Solid or Hazardous Waste. Analysis can take up to seven to ten working days to complete, therefore, an adequate allowance should be included in the construction program unless testing is completed prior to construction. If contamination is encountered, then substantial further testing (and associated delays) could be expected. We strongly recommend that this requirement is addressed prior to the commencement of excavation on site.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of JK Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

<u>TABLE A</u> MOISTURE CONTENT, ATTERBERG LIMITS AND LINEAR SHRINKAGE TEST REPORT

Client:	JK Geotechnics	Report No.:	34804LF - A
Project:	Proposed Inpatient Unit	Report Date:	28/07/2022
Location:	Muswellbrook District Hospital, Brentwood Street, Muswellbrook, NSW	Page 1 of 1	

AS 1289	TEST METHOD	2.1.1	3.1.2	3.2.1	3.3.1	3.4.1
BOREHOLE NUMBER	DEPTH m	MOISTURE CONTENT	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	LINEAR SHRINKAGE
		%	%	%	%	%
1	0.50 - 0.95	15.0	76	25	51	14.0
1	3.00 - 3.10	10.7	-	-	-	-
2	1.20 - 1.40	39.9	56	17	39	12.5
2	7.40 - 7.80	28.6	-	-	-	-
2	11.30 - 11.60	21.7	-	-	-	-
3	2.60 - 3.00	8.8	-	-	-	-
4	0.50 - 0.95	27.9	53	17	36	13.0
4	4.50 - 4.95	20.0	-	-	-	-
5	2.00 - 2.45	23.9	61	17	44	17.0*
5	9.80 - 10.00	8.8	-	-	-	-
6	0.50 - 0.95	19.0	47	17	30	14.0*
6	5.20 - 5.50	4.4	-	-	-	-

Notes:

• The test sample for liquid and plastic limit was air-dried & dry-sieved

• The linear shrinkage mould was 125mm

· Refer to appropriate notes for soil descriptions

- Date of receipt of sample: 08/07/2022.
- Sampled and supplied by client. Samples tested as received.
- * Denotes Linear Shrinkage curled.

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

4 28/07/2022 Authorised Signature / Date (D. Treweek)

TABLE B FOUR DAY SOAKED CALIFORNIA BEARING RATIO TEST REPORT

Client: Project: Location:	JK Geotechnics Proposed Inpatient Unit Muswellbrook District Hosp	oital, Brentwood Stree	t, Muswellbrook, NS	5W		Report No.: Report Date: Page 1 of 1	34804LF - B 20/07/2022
BOREHOLE NUMBE	R	BH 1	BH 2	BH 5	BH 6		
DEPTH (m)		0.40 - 1.20	0.50 - 1.40	0.60 - 1.50	0.60 - 1.40		
Surcharge (kg)	2	9.0	9.0	9.0	9.0		
Maximum Dry Density	y (t/m³)	1.84 STD	1.81 STD	1.65 STD	1.84 STD		
Optimum Moisture Co	ontent (%)	13.8	16.0	20.5	14.3		
Moulded Dry Density	(t/m ³)	1.81	1.77	1.61	1.80		
Sample Density Ratio	0 (%)	98	98	98	98		
Sample Moisture Rat	io (%)	98	100	100	99		
Moisture Contents							
Insitu (%)		16.7	16.6	26.0	18.0		
Moulded (%)		13.5	16.0	20.4	14.2		
After soaking ar	nd						
After Test, Top	30mm(%)	17.4	22.2	24.5	18.9		
	Remaining Depth (%)	16.5	17.7	21.6	14.8		
Material Retained on	19mm Sieve (%)	0	0	0	0		
Swell (%)		0.0	1.0	0.5	0.5		
C.B.R. value:	@2.5mm penetration	5		6	3.5		
	@5.0mm penetration		4.0				

NOTES: Sampled and supplied by client. Samples tested as received.

· Refer to appropriate notes for soil descriptions

• Test Methods : AS 1289 6.1.1, 5.1.1 & 2.1.1.

Date of receipt of sample: 08/07/2022.

• BH's 1, 5 & 6 dried back prior to testing as too saturated.

• BH 1 & 6 had insufficient material supplied to complete a 4-point compaction curve.

BH 5 had to use recycled material from the compaction curve for the CBR sample as insufficient material was supplied.

Number:1327

NATA Accredited Laboratory

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

20/07/2022

Authorised Signature / Date (D. Treweek)

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE C SHRINK - SWELL TEST REPORT **TEST METHOD: AS1289 7.1.1**

Client:	JK Geotechnics	Report No.: 34804LF - C
Project:	Proposed Inpatient Unit	Report Date: 19/07/2022
Location:	Muswellbrook District Hospital, Brentwood Street, Muswellbrook, NSW	Page 1 of 4

Borehole No.:	1	Depth	n: 1.50 - 2.00m			
MOISTURE CONTENT (SWELL)		ESTIMATED U	INCONFINED CO	MPRESSIVE ST	RENGTH	
BEFORE TEST	AFTER TEST	BEFORE	TEST		AFTER	TEST
12.1%	17.4%	>550	kPa		130,300,280	kPa
LOAD	SETTLEMENT UNDER LOAD BEFORE SATURATION		SWELL ON SATURATION		SHRINKAGE	
25	-0.7%			0.0%		0.3%

Notes: Sampled and supplied by client. Sample tested as received.

- Suction Value used in calculation = 1.8pF
- Volume Change Coefficient (α) was assumed = 2
- Visually estimated inclusions by volume = 0-5%
- Shrinkage Cracking = Moderate
- Soil Crumbling = none
- Date of receipt of sample: 08/07/2022.

Accredited for compliance with ISO/IEC 17025 - Testing, This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

Authorised Signature / Date (D. Treweek)

9/7/22

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE C SHRINK - SWELL TEST REPORT TEST METHOD: AS1289 7.1.1

Client:	JK Geotechnics	Report No.:	34804LF - C
Project:	Proposed Inpatient Unit	Report Date:	19/07/2022
Location:	Muswellbrook District Hospital, Brentwood Street, Muswellbrook, NSW	Page	2 of 4

Notes: Sampled and supplied by client. Sample tested as received.

- Suction Value used in calculation = 1.8pF
- Volume Change Coefficient (α) was assumed = 2
- Visually estimated inclusions by volume = 0-5%
- Shrinkage Cracking = Moderate
- Soil Crumbling = none
- Date of receipt of sample: 08/07/2022.

Number: 1327

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

Authorised Signature / Date (D. Treweek)

19/7/22

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE C SHRINK - SWELL TEST REPORT TEST METHOD: AS1289 7.1.1

Client:	JK Geotechnics	Report No.: 34804LF - C
Project:	Proposed Inpatient Unit	Report Date: 19/07/2022
Location:	Muswellbrook District Hospital, Brentwood Street, Muswellbrook, NSW	Page 3 of 4

Borehole No .:	4	Depth	i: 1.00 - 1.45m			
MOISTURE BEFORE TEST	CONTENT (SWELL) AFTER TEST	ESTIMATED U BEFORE	NCONFINED CC	MPRESSIVE STR	ENGTH AFTER	TEST
27.3%	31.0%	250	kPa		100	kPa
LOAD	SETTLEMENT UNDER LOAD BEFORE SATURATION		SWELL ON SATURATION		SHRINKAGE	
25	-1.0%		1.6%		3.6%	

Notes: Sampled and supplied by client. Sample tested as received.

- Suction Value used in calculation = 1.8pF
- Volume Change Coefficient (α) was assumed = 2
- Visually estimated inclusions by volume = 0-5%
- Shrinkage Cracking = Moderate
- Soil Crumbling = none
- Date of receipt of sample: 08/07/2022.

Number:1327

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

Authorised Signature / Date 1977 (D. Treweek) 197722

115 Wicks Road Macquarie Park, NSW 2113 PO Box 976 North Ryde, Bc 1670 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE C SHRINK - SWELL TEST REPORT TEST METHOD: AS1289 7.1.1

Client:	JK Geotechnics	Report No.: 34804LF - C
Project:	Proposed Inpatient Unit	Report Date: 19/07/2022
Location:	Muswellbrook District Hospital, Brentwood Street, Muswellbrook, NSW	Page 4 of 4

Notes: Sampled and supplied by client. Sample tested as received.

- Suction Value used in calculation = 1.8pF
- Volume Change Coefficient (α) was assumed = 2
- Visually estimated inclusions by volume = 0-5%
- Shrinkage Cracking = Moderate
- Soil Crumbling = none
- Date of receipt of sample: 08/07/2022.

NATA Accredited Laboratory

Number: 1327

Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced except In full without approval of the laboratory. Results relate only to the items tested or sampled.

Authorised Signature / Date 19/2/22

TABLE D POINT LOAD STRENGTH INDEX TEST REPORT

Client:	NSW Health Infrastructure	Ref No:	34804LF
Project:	Proposed Inpatient Unit	Report:	А
Location:	Muswellbrook District Hospital, Brentwood Street,	Report Date:	5/07/22

MUSWELLBROOK, NSW

Page 1 of 1

				TEQT
		' S (50)		
NUMBER	(DIRECTION
	(11)			
1	3.88 - 3.92	0.09	2	A
	4.14 - 4.18	0.6	12	A
	4.65 - 4.69	8.4	168	A
	5.47 - 5.51	10.8	216	A
	6.08 - 6.11	0.2	4	A
	6.76 - 6.79	0.1	2	A
	7.56 - 7.59	5.8	116	Α
	7.92 - 7.94	0.08	2	A
	8.09 - 8.13	1.2	24	А
	8.59 - 8.61	0.07	1	А
	9.43 - 9.45	0.2	4	А
	9.70 - 9.72	2.1	42	Α
	10.16 - 10.19	0.1	2	А
	10.60 - 10.62	0.1	2	А
	11.21 - 11.25	0.2	4	Α
	11.78 - 11.81	0.1	2	А
	12.40 - 12.44	0.2	4	А
	12.72 - 12.75	0.1	2	А
	13.11 - 13.14	0.2	4	А
4	6.30 - 6.33	10.1	202	А
6	6.48 - 6.51	0.2	4	А
	6.78 - 6.82	0.09	2	А
	7.27 - 7.30	1.7	34	А
	7.60 - 7.64	0.3	6	А
	8.24 - 8.28	0.08	2	A
	8 79 - 8 82	0.5	10	Δ
	942-944	0.4	8	Α
	9 85 - 9 88	0.1	2	A
	10.13 - 10.17	0.1	2	A
	10.65 - 10.68	0.3	- 6	A

4

А

11.15 - 11.18 0.2

TABLE D POINT LOAD STRENGTH INDEX TEST REPORT

Client:	NSW Health Infrastructure	Ref No:	34804LF
Project:	Proposed Inpatient Unit	Report:	А
Location:	Muswellbrook District Hospital, Brentwood Street, MUSWELLBROOK, NSW	Report Date:	5/07/22

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED	TEST
NUMBER			COMPRESSIVE STRENGTH	DIRECTION
	(m)	(MPa)	(MPa)	
6	12.25 - 12.28	0.1	2	Α
	12.88 - 12.92	0.2	4	А
	13.43 - 13.46	0.2	4	А
	13.92 - 13.95	0.1	2	А
	14.03 - 14.07	0.3	6	Α

Page of 1

<u>NOTES</u>

- 1. In the above table, testing was completed in test direction A for the axial direction, D for the diametral direction, B for the block test and L for the lump test.
- 2. The above strength tests were completed at the 'as received' moisture content.
- 3. Test Method: RMS T223.
- 4. For reporting purposes, the $l_{S(50)}$ has been rounded to the nearest 0.1MPa, or to one significant figure if less than 0.1MPa.
- 5. The estimated Unconfined Compressive Strength was calculated from the Point Load Strength Index based on the correlation provided in AS1726:2017 'Geotechnical Site Investigations' and rounded off to the nearest whole number: U.C.S. = 20 Is(50).

CERTIFICATE OF ANALYSIS 300005

Client Details	
Client	JK Geotechnics
Attention	Jacob Feng
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	<u>34804LF, Muswellbrook, NSW</u>
Number of Samples	9 Soil
Date samples received	08/07/2022
Date completed instructions received	08/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	15/07/2022			
Date of Issue	15/07/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Diego Bigolin, Inorganics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 300005 Revision No: R00

Misc Inorg - Soil						
Our Reference		300005-1	300005-2	300005-3	300005-4	300005-5
Your Reference	UNITS	BH1	BH2	BH2	BH3	BH3
Depth		1.2-1.4	1.5-1.95	5.6-5.9	3.2-3.5	7.2-7.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Date analysed	-	13/07/2022	13/07/2022	13/07/2022	13/07/2022	13/07/2022
pH 1:5 soil:water	pH Units	6.3	8.9	9.4	9.7	9.2
Chloride, Cl 1:5 soil:water	mg/kg	260	880	640	100	510
Sulphate, SO4 1:5 soil:water	mg/kg	250	370	150	46	220
Resistivity in soil*	ohm m	26	10	15	38	16
Misc Inora - Soil	·		•	-		-

Our Reference		300005-6	300005-7	300005-8	300005-9
Your Reference	UNITS	BH4	BH5	BH5	BH6
Depth		3.0-3.45	0.5-0.95	4.5-4.95	1.5-1.95
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	13/07/2022	13/07/2022	13/07/2022	13/07/2022
Date analysed	-	13/07/2022	13/07/2022	13/07/2022	13/07/2022
pH 1:5 soil:water	pH Units	9.4	8.3	9.1	8.8
Chloride, Cl 1:5 soil:water	mg/kg	180	<10	37	20
Sulphate, SO4 1:5 soil:water	mg/kg	100	26	20	34
Resistivity in soil*	ohm m	24	63	96	90

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY CONTROL: Misc Inorg - Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	300005-6
Date prepared	-			13/07/2022	4	13/07/2022	13/07/2022		13/07/2022	13/07/2022
Date analysed	-			13/07/2022	4	13/07/2022	13/07/2022		13/07/2022	13/07/2022
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	4	9.7	9.7	0	99	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	4	100	100	0	96	#
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	4	46	46	0	92	#
Resistivity in soil*	ohm m	1	Inorg-002	<1	4	38	39	3	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.
Report Comments

MISC_INORG_DRY:# Percent recovery is not applicable due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Table 1: Summary of Pillar Stability Calculations and Factor of Safety

Pillar	Width (m)	Length (m)	Scaled Tributary Width (m)	Tributary Length (m)			Factor	of Safety		
Height					2	.3	3	.3	4	.5
State					Dry	Flooded	Dry	Flooded	Dry	Flooded
Dillor 1	12.9	45.7	19 5	51 5	3.6	4.3	2.6	3.2	2.0	2.4
Pilial 1	11.9	45.7	10.5	51.5	3.2	3.8	2.3	2.8	1.8	2.2
Dillar 2	16.0	A1 A	21.7	18.2	4.1	5.0	3.0	3.7	2.3	2.8
Final Z	15.0	41.4	21.7	40.2	3.7	4.5	2.7	3.3	2.1	2.5
Dillar 3	10.8	36.9	16.8	12 1	2.9	3.6	2.2	2.6	1.7	2.0
Filial S	9.8	50.9	10.8	42.4	2.5	3.1	1.9	2.3	1.4	1.7
Pillar /	10.9	77 7	16.7	33 5	2.9	3.5	2.1	2.5	1.6	2.0
Filial 4	9.9	27.7	10.7	55.5	2.5	3.0	1.8	2.2	1.4	1.7
Dillar F	13.6	25 5	10.2	21.0	3.4	4.2	2.5	3.1	1.9	2.4
Filial J	12.6	23.3	19.5	51.0	3.1	3.7	2.2	2.7	1.7	2.1
Pillar 6	13.5	20.2	10.3	26.1	3.2	3.9	2.3	2.9	1.8	2.2
Final O	12.5	20.2	19.5	20.1	2.8	3.5	2.1	2.5	1.6	1.9
Pillar 7	18.8	24.3	25.1	20.8	4.3	5.2	3.2	3.8	2.4	2.9
Final 7	17.8	24.3	23.1	29.8	3.9	4.8	2.9	3.5	2.2	2.7
Pillar 8	22.1	33.6	27 /	30 /	5.3	6.4	3.9	4.7	3.0	3.6
Final O	21.1	55.0	27.4	55.4	4.9	5.9	3.6	4.4	2.8	3.4
Dillar 9	19.6	27.0	25.1	12.8	4.8	5.9	3.6	4.3	2.7	3.3
Filldi 5	18.6	57.5	23.1	43.0	4.5	5.4	3.3	4.0	2.5	3.1

C F	Clie Proj	nt: ect:	NSW PROF	HEA POSE	LTH D S	INFRA	STRU 3 DEV	ICTURE ELOPMENT				
L	.0Ca	ation	MUS	NELL	BR	DOK D	ISTRIC	CT HOSPITAL, BRENTWOOD) STRE	ET, M	USWE	LLBROOK, NSW
J	ob	No.:	34804LF				Me	thod: SPIRAL AUGER	R	.L. Sur	face:	179.11 m
	Date	: 28/	6/22						D	atum:	AHD	
F	Plan	t Тур	e: JK400)	1		Lo	gged/Checked By: J.F./B.Z.				
Groundwater	SA		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON	AUGERING			179 -	-			FILL: Silty sandy clay, low plasticity, dark grey, fine to medium grained sand, trace of root fibres and fine to medium grained, angular ironstone gravel.	w~PL		-	GRASS COVER APPEARS MODERATELY COMPACTED
0.5	5		N = 9 4,5,4	 178	1-			FILL: Silty clay, high plasticity, dark brown, trace of fine to medium grained, sub-angular ironstone gravel.	W>PL			- - - - - - -
				-			СН	Silty CLAY: high plasticity, brown, trace of fine to medium grained, sub-angular ironstone gravel.	w>PL	VSt - Hd	290 300 290 >600 >600	RESIDUAL
			N > 7 9,7/ 50mm ∖ REFUSAL	 177 — /	2-	-	-	Extremely Weathered sandstone: silty SAND, fine to medium grained, brown and orange brown, trace of fine to medium grained ironstone gravel and clay.	XW	(D)	>600	- VERY LOW 'TC' BIT - RESISTANCE - - - -
				-	. .			Extremely Weathered sandstone: silty sandy CLAY, low plasticity, light grey and grey, fine to medium grained sand.		Hd	-	
			N=SPT	- #176-	3-	_		SANDSTONE: fine to coarse grained, brown.	DW	VL-L		L BRANXTON FORMATION
			4/ 50mm REFUSAL	175 - - - - - - - - - - - - - - - - - -	4- 5-			REFER TO CORED BOREHOLE LOG				RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 8.0m. CLASS 18 MACHINE SLOTTED / HAND SLOTTED 50mm DIA. PVC STANDPIPE 8.0m TO 2.0m. CASING 2.0m TO 0m. 2mm SAND FILTER PACK 14.47m TO 0.4m. BACKFILLED WITH SAND (AND/OR CUTTINGS) TO THE SURFACE. COMPLETED WITH A CONCETED WITH A CONCETED GATIC COVER.

CORED BOREHOLE LOG

(Clie Proj _oc	nt: ject: ation	:	NSW H PROPC MUSW	IEALTH INFRASTRUCTURE DSED STAGE 3 DEVELOPME ELLBROOK DISTRICT HOSF	ENT PITAL	., BRI	ENTWOO	D STRE	ET, MUSWELLBROOK, NSW	
	Job	No.:	34	804LF	Core Size:	NML	С		R.	.L. Surface: 179.11 m	
1	Date	e: 28/	6/22	2	Inclination:	VER		L	Da	atum: AHD	
F	Plar	nt Typ	be:	JK400	Bearing: N	/A			Lo	ogged/Checked By: J.F./B.Z.	
					CORE DESCRIPTION			POINT LOAD)	DEFECT DETAILS	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		177 - - -	3-								
_	+	+176-	0	-	NO CORE 0.29m						
-			4 -		SANDSTONE: fine to coarse grained, orange brown and grey, with fine to medium grained, sub-angular and sub-rounded igneous and ironstone gravel, occasional fine grained, grey brown, high strength sandstone and light grey quartz bands, sub-horizontally bedded.	MW	VL - L	+0.090 +0.090 +0.60 			Branxton Formation
				- - - - - - - - - - - - - - - - - - -	\NO CORE 0.06m /		VH	1 	1 8 8 1	— (5.24m) Be, 5°, P, R, Clay Vn — (5.35m) Be, 5°, P, R, Clay Vn — (5.35m) Be, 5°, P, R, Clay Vn — (5.44m) Jh, 60°	
95%	RETURN		6-		SANDSTONE: fine to coarse grained, orange brown and light grey, with fine grained igneous clasts and high strength sandstone bands, sub-horizontally bedded.		, v∟ - L	•0.20 •0.20 +0.10 +0.10 		— (6.33m) Be, 5°, P, R, Clay Vn — (6.44m) Be, 5°, P, R, Clay Vn — (6.49m) XWS, 0°, 110 mm.t — (6.68m) XWS, 0°, 170 mm.t — (6.68m) J, 35°, P, R, Clay Vn	Branxton Formation
		- - - 171	8-		NO CORE 0.08m SANDSTONE: fine to coarse grained, orange brown and light greym with fine grained igneous clasts and high strength	HW	VL	0.080 1.2			nation
					sandstone bands, sub-horizontally bedded.			•0.070 			Branxton Form

JKGeotechnics

CORED BOREHOLE LOG

	Clie	ent:		NSW	HEALTH INFRASTRUCTURE						
F	Pro	ject:		PROP	OSED STAGE 3 DEVELOPM	ENT					
ι	.oc	ation	:	MUSV	VELLBROOK DISTRICT HOSI	PITAL	, BRI	ENTWOO	D STRE	ET, MUSWELLBROOK, NSW	
	lob	No.:	34	804LF	Core Size:	NML	2		R	R.L. Surface: 179.11 m	
1	Date	e: 28/	6/2	2	Inclination:	VER	TICA	L	D	atum: AHD	
F	Plar	nt Typ	oe:	JK400	Bearing: N	/A			L	ogged/Checked By: J.F./B.Z.	
					CORE DESCRIPTION			POINT LOAD)	DEFECT DETAILS	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm) ອີດີຈິລິລ	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
-		170		-						(8.92m) J, 65°, Ir, R, Clay Vn (9.08m) Cr, 0°, 50 mm.t (9.10m) CP (10m) CP (10m) (CED)	
		- - - 169 - -	10-		 NO CORE 0.08m SANDSTONE: fine to coarse grained, orange brown and light greym with fine grained igneous clasts and high strength sandstone bands, sub-horizontally bedded. SILTSTONE: dark grey, with sub-horizontal grey laminar, trace of sub-angular and sub-rounded igneous gravel, occasional fine grained, grey, high strength bands, sub-horizontally bedded. 	L HW DW	VL J	+0.20 -2.1 -2.1 -1 -2.1 -1 -1 -1 -2.1 -1 -1 -1 -1 -2.1 -1 -1		(9.16in) DRLLING INCOLED (9.37m) Be, 5°, P, R, Cn (9.42m) Be, 0°, P, R, Clay Vn (9.65m) Be, 15°, P, R, Clay Vn (9.67m) Be, 10°, Ir, R, Cn (9.85m) Be, 5°, P, R, Clay Vn 	tion
95%	RETURN	- 168 - - - -	11-					•0.10			Branxton Forma
		167 - -	12-					•0.20 0.10			ition
0		166	13-		SILTSTONE: dark grey, with sub-horizontal grey laminar, trace of fine to coarse grained, sub-angular igneous gravel, sub-horiztonally bedded.	DW	VL - L	•0.20		(13.07m) Be, 5°, P, R, Clay Vn (13.18m) Cr, 0°, 50 mm.t	nxton Forme
		- 165 -	14 -		END OF BOREHOLE AT 13.41 m						Brai
		- 	15-						6600 -		

Client:	NSW HEA	LTH	INFRA	STRU	CTURE				
Project: Location:	PROPOSE MUSWELI	ED S _BR(TAGE 3 DOK DI	3 DEV STRIC	ELOPMENT CT HOSPITAL, BRENTWOOI	D STRE	ET, MI	JSWEI	LBROOK, NSW
Job No.: 34	1804LF			Me	thod: SPIRAL AUGER	R.	.L. Sur	face: ´	181.02 m
Date: 30/6/2	22					Da	atum:	AHD	
Plant Type:	JK400	1		Lo	gged/Checked By: J.F./B.Z.				
Groundwater Record DB DB DB	Field Tests RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
	173 - 173 - 172 - 171 -			-	Extremely Weathered sandstone: silty CLAY, medium plasticity, light brown, with low strength bands. (continued) as above, but with distinctly weathered bands.	XW DW - XW	(Hd) (L - Hd)		BRANXTON FORMATION
			-	-	SILTSTONE: dark grey, trace of fine to medium grained, sub-angular igneous clasts.	DW	(VL - L)		LOW RESISTANCE WITH MODERATE BANDS
					END OF BOREHOLE AT 13.00 m				

C	lient: roiect:	NSW PROP	HEA	LTH	INFR/ TAGE	ASTRU 3 DEV	CTURE				
	ocation:	MUSV	VELL	BRO		ISTRIC	CT HOSPITAL, BRENTWOO	D STREI	ET, M	USWEI	LLBROOK, NSW
J	ob No.:	34804LF				Me	thod: SPIRAL AUGER	R.	L. Sur	face: ²	181.69 m
D	ate: 29/6 lant Type	5/22 o: 1k/100					need/Checked By: IF/B 7	Da	atum:	AHD	
		c. 31(400				LO				a)	
Groundwater Record	SAMPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetromete Readings (kF	Remarks
			- - - 174 –			-	SANDSTONE: fine to coarse grained, brown, trace of high strength igneous and ironstone bands. <i>(continued)</i>	HW	VL		MODERATE RESISTANCE
			-	8			SILTSTONE: dark grey, trace of medium to high strength igneous and ironstone bands.	HW	 VL		-
			173 -	9							-
			- 172	- - 10							-
5			- 171 –								-
			- - - - - - - -		-		END OF BOREHOLE AT 11.00 m				
			- 169 – - -		-						-
			- 168 -	-	-						-

COPYRIGHT

CORED BOREHOLE LOG

C P L	lien roje oca	nt: ect: ation		NSW H PROP(MUSW	IEALTH INFRASTRUCTURE DSED STAGE 3 DEVELOPME ELLBROOK DISTRICT HOSF	ENT PITAL	., BR	ENTWOO	D STREI	ET, MUSWELLBROOK, NSW	
J	ob	No.:	34	804LF	Core Size:	NML	С		R.	L. Surface: 183.93 m	
D	ate): 29	6/22	2	Inclination:	VER		AL.	Da	atum: AHD	
P	lan	t Typ	e:	JK400	Bearing: N	/A			Lo	ogged/Checked By: J.F./B.Z.	
					CORE DESCRIPTION)	DEFECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		- - - 178 - - -	6-		START CORING AT 6.20m Extremely Weathered sandstone: silty sandy CLAY, medium plasticity, light brown, with high strength bands. NO CORE 1.76m	XW	Hd				sranxton Formation
2 %		177 - - 176 -	7 -	- - - - - - - - - - - - - - - - - - -						- 	
		- 175 — - - - 174 — - - - -	9-		Extremely Weathered sandstone: silty sandy CLAY, medium plasticity, light brown, with high strength bands.	×vv	На				Branxton Formation
		- 173 - - - - 172 -	11 -		END OF BOREHOLE AT 10.50 m						

F	Client: Proiect:	NSW HEA	LTH	INFRA	ASTRU 3 DEV	ICTURE				
1	ocation:	MUSWEL	LBR	DOK D	ISTRIC	CT HOSPITAL, BRENTWOOI) STREI	ET, M	USWE	LLBROOK, NSW
	Job No.: 34	804LF			Me	thod: SPIRAL AUGER	R.	L. Sur	face:	184.72 m
1	Date: 28/6/2	22					Da	atum:	AHD	
F	Plant Type:	JK400		1	Lo	gged/Checked By: J.F./B.Z.	1			
Groundwater	SAMPLES DB 20 DB 2	Field Tests RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
		<u>i</u> <u></u> 177 - 176 - 175 - 174 -				Silty CLAY: medium plasticity, light brown, trace of fine to medium grained sand. <i>(continued)</i>	≥ŏ≥ w>PL DW	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	ŤůŘ	BRANXTON FORMATION BRANXTON FORMATION MODERATE RESISTANCE
		173 - 172 - 171 -				END OF BOREHOLE AT 11.00 m				GROUNDWATER MONITORING WELL INSTALLED TO 11.0m. CLASS 18 MACHINE SLOTTED / HAND SLOTTED 50mm DIA, PVC STANDPIPE 11.0m TO 2.0m. CASING 2.0m TO 0m. 2mm SAND FILTER PACK 11.0m TO 1.0m. BENTONITE SEAL 1.0m TO 0m. BACKFILLED WITH SAND (AND/OR CUTTINGS) TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

	Client:	NSW	HEA			STRU					
	-roject: .ocation:	MUSV	VELL	.BR(DOK D	3 DEV	ELOPMENT CT HOSPITAL, BRENTWOOI	D STRE	ET, M	USWEI	LLBROOK, NSW
	Job No.:	34804LF				Me	thod: SPIRAL AUGER	R.	L. Su	face: ²	179.44 m
	Date: 27/6	6/22						Da	atum:	AHD	
_	lant Typ	e: JK400) 			LO	ggea/Cneckea By: J.F./B.Z.				
Groundwater	SAMPLES DB DB DB DB DB DB DB DB DB DB DB DB DB	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa	Remarks
DRY ON			- - 179-				FILL: Silty sand, fine to medium grained, dark grey, with slag.	w~PL			_ GRASS COVER - - -
		N = 4 1,2,2	-			СН	Silty CLAY: high plasticity, brown and dark brown, trace of fine to medium grained ironstone gravel and root fibres.	w>PL	VSt		RESIDUAL
3-20			- - 178-	. 1-			as above, but with fine to medium grained sand.		Hd		
02.4 2019-05-31 Prj; JK 9.01.0 2018-0	N = 8 2,4,4 177 2 -						St		- - - - - - - -		
IN SILU 1001 - DGD DD: JK 9.(N = 21	- 1//-	3-		CI	Silty Sandy CLAY: medium plasticity, light grey and grey, fine to medium grained sand, trace of fine to medium grained quartz and ironstone gravel.				- LOW 'TC' BIT - RESISTANCE - - - -
08:58 10.01.00.01 Datgel Lab and		N = 21 6,9,12 176 -								- - - - - - -	
LIBKOOK.GFJ < <drawingfile>> 01/08/20/22</drawingfile>		N=SPT 3/ 100mm REFUSAL	- 175	5-			Extremely Weathered sandstone: silty sandy CLAY, medium plasticity, light brown and brown, fine to medium grained sand, trace of fine to medium grained, angular gravel.		 Hd		- BRANXTON FORMATION - GROUNDWATER - MONITORING WELL - INSTALLED TO 8.0m. - CLASS 18 MACHINE - SLOTTED / HAND - SLOTTED 50mm DIA. PVC - STANDPIPE 8.0m TO
- MAS IEK 34804LF MUSWE			- 174								2.0m. CASING 1.5m TO 0m. 2mm SAND FILTER PACK 14.14m TO 1.5m. BENTONITE SEAL 2.0m TO 0m. BACKFILLED WITH SAND
JK 9.02.4 LIB.GLB LOG JK AUGERHULE			- 173 -	6-	-		REFER TO CORED BOREHOLE LOG				CAND/OR CUTTINGS) TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
	PVRICHT	•	1	ı			1				

K 0 00 4 I IB CI B

CORED BOREHOLE LOG

Client: Projec Locati	t: ct: tion:	NSW PROP MUSV	HEALTH INFRASTRUCTURE OSED STAGE 3 DEVELOPMI VELLBROOK DISTRICT HOSI	ENT PITAL	, BRI	ENTWOO	D STRE	ET, MUSWELLBROOK, NSW	
Job No	lo.: 3	34804LF	Core Size:	NMLO	, C		R	.L. Surface: 179.44 m	
Date: 2	27/6	6/22	Inclination:	VER	TICA	L	D	atum: AHD	
Plant 1	Туре	e: JK400	Bearing: N	I/A			Le	ogged/Checked By: J.F./B.Z.	
			CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Barrel Lift	RL (m AHD)	Depth (m) Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50) ^{1, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,}	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
17	- 174 -		START CORING AT 5.93m						
	-	6-	NO CORE 0.48m						
17	- 173 -	- - - - - - - - - - - - - - - -	SANDSTONE: fine to medium grained, brown, with fine to medium grained sub-angular and sub-rounded igneous	HW	VL - L	•0.20			
17	- - - - - - - - - -	7	gravel, sub-horizontally bedded, occasional fine grained, grey brown, high strength sandstone and ironstone bands.	MW HW MW	L VL VL - L	•0.090 		 (6.60m) XWS, 0°, 20 mm.t (6.65m) Be, 15°, P, R, Fe Cn (6.96m) XWS, 0°, 70 mm.t (7.38m) Be, 10°, P, R, Fe Ct (7.52m) Be, 15°, P, R, Fe Vn (7.86m) XWS, 0°, 120 mm.t (8.14m) Jh, 20° (8.14m) Jh, 14° (8.20m) J, 35°, Ir, R, Fe Sn 	
	171 — - - 170 — - - - - - - - - - - - - - - - - - - -	9	SILTSTONE: dark grey, sub-horizontally laminated, trace of fine to coarse grained, sub-angular igneous gravel, occasional medium to high strength bands, sub-horizontally bedded.	_	L-M VL-L	•0.10 •0.10 •0.301 •0.301 •0.201 •0.201 •0.201 •0.201 •0.201 •0.201 •0.10		 ——(8.38m) XWS, 0°, 100 mm.t ——(9.16m) Be, 0°, P, R, Clay Vn ——(9.31m) J, 30°, P, R, Clay Vn ——(9.97m) J, 10°, P, R, Clay Vn ——(10.44m) Be, 5°, P, R, Clay Vn ——(10.56m) Be, 5°, P, R, Clay Vn ——(10.56m) Be, 5°, P, R, Clay Vn 	
16	168 - -						- 1960	(11.33m) XWS, 0°, 70 mm.t 	
				FRACTU	IRES N	0.10			AND! ING BR

JKGeotechnics

CORED BOREHOLE LOG

	Clier	nt:	N	SW F	EALTH INFRASTRUCTURE						
F	Proj	ect:	P	ROP	OSED STAGE 3 DEVELOPME	ENT					
1	_0Ca	ation	: M	IUSW	ELLBROOK DISTRICT HOSF	PITAL	, BRI	ENTWOO	D STRE	ET, MUSWELLBROOK, NSW	
	Job	No.:	3480	04LF	Core Size:	NML	с С		R	.L. Surface: 179.44 m	
1	Date	: 27/	6/22		Inclination:	VER		L	Da	atum: AHD	
1	Plan	t Typ	be: Ji	< 400	Bearing: N	/A			Lo	ogged/Checked By: J.F./B.Z.	
					CORE DESCRIPTION			POINT LOAD)	DEFECT DETAILS	
Water	Loss/Level Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
95%	RETURN	- 167 - - 166 - - -	- - - - - - - - - - - - - - - - - - -		SILTSTONE: dark grey, sub-horizontally laminated, trace of fine to coarse grained, sub-angular igneous gravel, occasional medium to high strength bands, sub-horizontally bedded. (continued)	MW	VL - L	*0.20 +0.20 +0.20 		(12.35m) Be, 0°, Ir, R, Clay Vn (12.35m) Be, 10°, P, R, Clay Vn (12.95m) Jh, 30° (12.95m) Jh, 35° (13.19m) J, 35°, Ir, R, Cn (13.34m) Jh, 30° (13.71m) J, 35°, Ir, R, Cn (13.71m) J, 75°, P, R, Cn (14.11m) J, 90°, P, R, Cn	
T		- 165 —	-		END OF BOREHOLE AT 14.14 m					- - - -	
a na ann an t-Ann an ann an		- - - 164 — - - -	- - - - - - - - - - - - - - - - - - -								
		- 163 — - -	- - - - - - - - - - - - - - - - - - -								
		- 162 - - - 161	- - - - 18- - - - - - - - - - - -								

JKGeotechnics

DYNAMIC CONE PENETRATION TEST RESULTS

Client:	NSW HEALT	H INFRASTR	UCTURE				
Project:	PROPOSED	STAGE 3 DE	VELOPMENT				
Location:	MUSWELLB	ROOK DISTR	ICT HOSPITA	AL, BRENTWO	DOD STREET	, MUSWELLE	BROOK,
Job No	24804LE				ight & Drop: 0	ka/510mm	
Job No. Data:	29 6 22			Pod Diamoto	r: 16mm	kg/5101111	
Date.	20-0-22			Rou Diamete	or: 20mm		
Tested by.	J.F.	2	2*		EI. 2011111	6*	44
Surface RI	Ν/Δ	Ζ Ν/Δ	3 ^π Ν/Δ	4 ^Δ	Ξ [*]	Ν/Δ	N/Δ
Depth (mm)		Ni Ni	imber of Blow	s per 100mm	Penetration		
0 - 100	3	7	11/80mm	10/50mm	8/50mm	10/50mm	7
100 - 200	7	18	REFUSAL	REFUSAL	REFUSAL	REFUSAL	15
200 - 300	6	16					7
300 - 400	3	15					7
400 - 500	5	12/50mm					6
500 - 600	7	REFUSAL					3
600 - 700	8						4
700 - 800	4						4
800 - 900	3						3
900 - 1000	1						3
1000 - 1100	1						2
1100 - 1200							2
1200 - 1300	↓ ↓						2
1300 - 1400	6						2
1400 - 1500	7						3
1500 - 1600	REFUSAL						9
1600 - 1700							REFUSAL
1700 - 1800							
1800 - 1900							
1900 - 2000							
2000 - 2100							
2100 - 2200							
2200 - 2300							
2300 - 2400							
2400 - 2500							
2500 - 2600							
2600 - 2700							
2700 - 2800							
2800 - 2900							
2900 - 3000 Remarks:	1 The procedure	e used for this too	t is described in	AS1289 6 3 2-10	97 (R2013)		
i tomarka.	2. Usually 8 blov 3. Datum of leve *At least 2 times	vs per 20mm is ta els is AHD attempted nearb	aken as refusal	, 0 1203.0.3.2-19			
Ref: JK Geotechnics DCP	0-3m Rev5 Feb19						

© JK GEOTECHNICS

LEGEND

- BOREHOLE DRILLED DURING CURRENT JK GEOTECHNICS INVESTIGATION
- BOREHOLE DRILLED DURING PREVIOUS 2016 COFFEY INVESTIGATION
- BOREHOLE DRILLED DURING PREVIOUS 2015 COFFEY INVESTIGATION

© JK GEOTECHNICS

VIBRATION EMISSION DESIGN GOALS

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally recognised to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) horizontal directions, in the plane of the uppermost floor), are summarised in Table 1 below.

It should be noted that peak vibration velocities higher than the minimum figures in Table 1 for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual condition of the structure.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural effects such as superficial cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

		Peak Vibration Velocity in mm/s					
Group	Type of Structure	,	Plane of Floor of Uppermost Storey				
		Less than 10Hz	10Hz to 50Hz	50Hz to 100Hz	All Frequencies		
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design.	20	20 to 40	40 to 50	40		
2	Dwellings and buildings of similar design and/or use.	5	5 to 15	15 to 20	15		
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (eg. buildings that are under a preservation order).	3	3 to 8	8 to 10	8		

Table 1: DIN 4150 – Structural Damage – Safe Limits for Building Vibration

Note: For frequencies above 100Hz, the higher values in the 50Hz to 100Hz column should be used.

REPORT EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the geotechnical report in regard to classification methods, field procedures and certain matters relating to the Comments and Recommendations section. Not all notes are necessarily relevant to all reports.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Geotechnical engineering involves gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)	
Very Soft (VS)	≤25	≤12	
Soft (S)	> 25 and \leq 50	> 12 and \leq 25	
Firm (F)	> 50 and \leq 100	> 25 and \leq 50	
Stiff (St)	> 100 and \leq 200	$> 50 \text{ and} \le 100$	
Very Stiff (VSt)	> 200 and \leq 400	$>$ 100 and \leq 200	
Hard (Hd)	> 400	> 200	
Friable (Fr)	Strength not attainable – soil crumbles		

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) is referred to as 'laminite'.

SAMPLING

Sampling is carried out during drilling or from other excavations to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on plasticity, grain size, colour, moisture content, minor constituents and, depending upon the degree of disturbance, some information on strength and structure. Bulk samples are similar but of greater volume required for some test procedures.

Undisturbed samples are taken by pushing a thin-walled sample tube, usually 50mm diameter (known as a U50), into the soil and withdrawing it with a sample of the soil contained in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shrinkswell behaviour, strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling used are given on the attached logs.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

Ν	= 1	3
4,	6, '	7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

Cone Penetrometer Testing (CPT) and Interpretation: The cone penetrometer is sometimes referred to as a Dutch Cone. The test is described in Australian Standard 1289.6.5.1–1999 (R2013) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Static Cone Penetration Resistance of a Soil – Field Test using a Mechanical and Electrical Cone or Friction-Cone Penetrometer'.

In the tests, a 35mm or 44mm diameter rod with a conical tip is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with a hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the frictional resistance on a separate 134mm or 165mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are electrically connected by wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck. The CPT does not provide soil sample recovery.

As penetration occurs (at a rate of approximately 20mm per second), the information is output as incremental digital records every 10mm. The results given in this report have been plotted from the digital data.

The information provided on the charts comprise:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone – expressed in MPa. There are two scales presented for the cone resistance. The lower scale has a range of 0 to 5MPa and the main scale has a range of 0 to 50MPa. For cone resistance values less than 5MPa, the plot will appear on both scales.
- Sleeve friction the frictional force on the sleeve divided by the surface area – expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed as a percentage.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and occasionally very soft clays, rising to 4% to 10% in stiff clays and peats. Soil descriptions based on cone resistance and friction ratios are only inferred and must not be considered as exact.

Correlations between CPT and SPT values can be developed for both sands and clays but may be site specific.

Interpretation of CPT values can be made to empirically derive modulus or compressibility values to allow calculation of foundation settlements.

Stratification can be inferred from the cone and friction traces and from experience and information from nearby boreholes etc. Where shown, this information is presented for general guidance, but must be regarded as interpretive. The test method provides a continuous profile of engineering properties but, where precise information on soil classification is required, direct drilling and sampling may be preferable. There are limitations when using the CPT in that it may not penetrate obstructions within any fill, thick layers of hard clay and very dense sand, gravel and weathered bedrock. Normally a 'dummy' cone is pushed through fill to protect the equipment. No information is recorded by the 'dummy' probe.

Flat Dilatometer Test: The flat dilatometer (DMT), also known as the Marchetti Dilometer comprises a stainless steel blade having a flat, circular steel membrane mounted flush on one side.

The blade is connected to a control unit at ground surface by a pneumatic-electrical tube running through the insertion rods. A gas tank, connected to the control unit by a pneumatic cable, supplies the gas pressure required to expand the membrane. The control unit is equipped with a pressure regulator, pressure gauges, an audiovisual signal and vent valves.

The blade is advanced into the ground using our CPT rig or one of our drilling rigs, and can be driven into the ground using an SPT hammer. As soon as the blade is in place, the membrane is inflated, and the pressure required to lift the membrane (approximately 0.1mm) is recorded. The pressure then required to lift the centre of the membrane by an additional 1mm is recorded. The membrane is then deflated before pushing to the next depth increment, usually 200mm down. The pressure readings are corrected for membrane stiffness.

The DMT is used to measure material index (I_D), horizontal stress index (K_D), and dilatometer modulus (E_D). Using established correlations, the DMT results can also be used to assess the 'at rest' earth pressure coefficient (K₀), over-consolidation ratio (OCR), undrained shear strength (C_u), friction angle (ϕ), coefficient of consolidation (C_h), coefficient of permeability (K_h), unit weight (γ), and vertical drained constrained modulus (M).

The seismic dilatometer (SDMT) is the combination of the DMT with an add-on seismic module for the measurement of shear wave velocity (V_s). Using established correlations, the SDMT results can also be used to assess the small strain modulus (G_o).

Portable Dynamic Cone Penetrometers: Portable Dynamic Cone Penetrometer (DCP) tests are carried out by driving a 16mm diameter rod with a 20mm diameter cone end with a 9kg hammer dropping 510mm. The test is described in Australian Standard 1289.6.3.2–1997 (R2013) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – 9kg Dynamic Cone Penetrometer Test'.

The results are used to assess the relative compaction of fill, the relative density of granular soils, and the strength of cohesive soils. Using established correlations, the DCP test results can also be used to assess California Bearing Ratio (CBR).

Refusal of the DCP can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Vane Shear Test: The vane shear test is used to measure the undrained shear strength (C_u) of typically very soft to firm fine grained cohesive soils. The vane shear is normally performed in the bottom of a borehole, but can be completed from surface level, the bottom and sides of test pits, and on recovered undisturbed tube samples (when using a hand vane).

The vane comprises four rectangular blades arranged in the form of a cross on the end of a thin rod, which is coupled to the bottom of a drill rod string when used in a borehole. The size of the vane is dependent on the strength of the fine grained cohesive soils; that is, larger vanes are normally used for very low strength soils. For borehole testing, the size of the vane can be limited by the size of the casing that is used.

For testing inside a borehole, a device is used at the top of the casing, which suspends the vane and rods so that they do not sink under selfweight into the 'soft' soils beyond the depth at which the test is to be carried out. A calibrated torque head is used to rotate the rods and vane and to measure the resistance of the vane to rotation.

With the vane in position, torque is applied to cause rotation of the vane at a constant rate. A rate of 6° per minute is the common rotation rate. Rotation is continued until the soil is sheared and the maximum torque has been recorded. This value is then used to calculate the undrained shear strength. The vane is then rotated rapidly a number of times and the operation repeated until a constant torque reading is obtained. This torque value is used to calculate the remoulded shear strength. Where appropriate, friction on the vane rods is measured and taken into account in the shear strength calculation.

LOGS

The borehole or test pit logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse engineering characteristics or behaviour. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing is normally carried out in accordance with Australian Standard 1289 '*Methods of Testing Soils for Engineering Purposes*' or appropriate NSW Government Roads & Maritime Services (RMS) test methods. Details of the test procedure used are given on the individual report forms.

ENGINEERING REPORTS

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building) the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

Reasonable care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions the potential for this will be partially dependent on borehole spacing and sampling frequency as well as investigation technique.
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of persons or contractors responding to commercial pressures.
- Details of the development that the Company could not reasonably be expected to anticipate.

If these occur, the Company will be pleased to assist with investigation or advice to resolve any problems occurring.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

REPRODUCTION OF INFORMATION FOR CONTRACTUAL PURPOSES

Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Copyright in all documents (such as drawings, borehole or test pit logs, reports and specifications) provided by the Company shall remain the property of Jeffery and Katauskas Pty Ltd. Subject to the payment of all fees due, the Client alone shall have a licence to use the documents provided for the sole purpose of completing the project to which they relate. Licence to use the documents may be revoked without notice if the Client is in breach of any obligation to make a payment to us.

REVIEW OF DESIGN

Where major civil or structural developments are proposed <u>or</u> where only a limited investigation has been completed <u>or</u> where the geotechnical conditions/constraints are quite complex, it is prudent to have a joint design review which involves an experienced geotechnical engineer/engineering geologist.

SITE INSPECTION

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related.

Requirements could range from:

- a site visit to confirm that conditions exposed are no worse than those interpreted, to
- a visit to assist the contractor or other site personnel in identifying various soil/rock types and appropriate footing or pile founding depths, or
- iii) full time engineering presence on site.

SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Major Divisions		Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
of soil excluding oversize fraction is 0.075mm)	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
	fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
		GM Gravel-silt mixtures and sand-silt mixtures		'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
than 65% eater than	SAND (more than half of coarse fraction is smaller than 2.36mm)	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
grained soil (more t gre		SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
		SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

Major Divisions		Group			Laboratory Classification		
		Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
of soil excluding 0.075mm)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
ın 35% ss than		OL	Organic silt	Low to medium	Slow	Low	Below A line
ore tha on is le	SILT and CLAY (high plasticity)	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti		СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line
e grained s oversize		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.i.	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKGeotechnics

LOG SYMBOLS

Log Column	Symbol	Definition				
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown.				
		Extent of borehole/test pit collapse shortly after drilling/excavation.				
		Groundwater seepage into borehole or test pit noted during drilling or excavation.				
Samples	ES	Sample taken over depth indicated, for environmental analysis.				
	U50	Undisturbed 50mm diameter tube sample taken over depth indicated.				
	DB	Bulk disturbed sample taken over depth indicated.				
	DS	Small disturbed bag sample taken over depth indicated.				
	ASR	Soil sample taken over depth indicated, for asbestos analysis.				
	SAL	Soil sample taken over depth indicated, for salinity analysis.				
Field Tests	N = 17	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual				
	4, 7, 10	figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within				
	N - 5	the corresponding 150mm depth increment.				
	$N_c = 5$	figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers				
	7 3R	to apparent hammer refusal within the corresponding 150mm depth increment.				
	V/NS = 25	Vana choar reading in kBa of undrained chear strength				
	PID = 100	Photoionisation detector reading in ppm (soil sample headspace test).				
Moisture Condition	w > PL	Moisture content estimated to be greater than plastic limit.				
(Fine Grained Soils)	$w \approx PL$	Moisture content estimated to be approximately equal to plastic limit.				
	w < PL	Moisture content estimated to be less than plastic limit.				
	W≈LL W>LL	Moisture content estimated to be near inquid infit.				
(Coarse Grained Soils)		DRY – runs freely through fingers.				
	M	MOIST – does not run freely but no free water visible on soil surface.				
	w	WET – free water visible on soil surface.				
Strength (Consistency)	VS	VERY SOFT – unconfined compressive strength \leq 25kPa.				
Cohesive Soils	S	SOFT – unconfined compressive strength > 25kPa and \leq 50kPa.				
	F	FIRM – unconfined compressive strength > 50 kPa and ≤ 100 kPa.				
	St	STIFF – unconfined compressive strength > 100kPa and \leq 200kPa.				
	VSt Hd	VERY STIFF $-$ unconfined compressive strength > 200kPa and \leq 400kPa.				
	Fr	HARD – unconfined compressive strength > 400KPa.				
	()	Bracketed symbol indicates estimated consistency based on tactile examination or other				
		assessment.				
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)				
(Cohesionless Soils)	VL	VERY LOOSE ≤ 15 0-4				
	L	LOOSE > 15 and \leq 35 4 - 10				
	MD	MEDIUM DENSE > 35 and ≤ 65 10 - 30				
	D	DENSE > 65 and \leq 85 30 - 50				
		VERY DENSE > 85 > 50				
	()	Bracketed symbol indicates estimated density based on ease of drilling or other assessment.				
Hand Penetrometer300Readings250		Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				

8

Log Column	Symbol	Definition		
Remarks	'V' bit	Hardened steel 'V' shaped bit.		
	'TC' bit	Twin pronged tungsten carbide bit.		
	T_{60}	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.		
	Soil Origin	The geological ori	gin of the soil can generally be described as:	
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 	
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 	
		ALLUVIAL	- soil deposited by creeks and rivers.	
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 	
		MARINE	- soil deposited in a marine environment.	
		AEOLIAN	 soil carried and deposited by wind. 	
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 	
		LITTORAL	 beach deposited soil. 	

Classification of Material Weathering

Term	Abbreviation		Definition	
Residual Soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely Weathered	xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	
Highly Weathered	Distinctly Weathered	HW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(Note 1) oderately Weathered			The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering*. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength		
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment	
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.	
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.	
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.	
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	

Abbreviations Used in Defect Description

Cored Borehole L	.og Column	Symbol Abbreviation	Description
Point Load Streng	th Index	• 0.6	Axial point load strength index test result (MPa)
		x 0.6	Diametral point load strength index test result (MPa)
Defect Details	– Туре	Ве	Parting – bedding or cleavage
		CS	Clay seam
		Cr	Crushed/sheared seam or zone
		J	Joint
		Jh	Healed joint
		il	Incipient joint
		XWS	Extremely weathered seam
	– Orientation	Degrees	Defect orientation is measured relative to normal to the core axis (ie. relative to the horizontal for a vertical borehole)
	– Shape	Р	Planar
		С	Curved
		Un	Undulating
		St	Stepped
		lr	Irregular
	– Roughness	Vr	Very rough
		R	Rough
		S	Smooth
		Ро	Polished
		SI	Slickensided
	– Infill Material	Ca	Calcite
		Cb	Carbonaceous
		Clay	Clay
		Fe	Iron
		Qz	Quartz
		Ру	Pyrite
	– Coatings	Cn	Clean
		Sn	Stained – no visible coating, surface is discoloured
		Vn	Veneer – visible, too thin to measure, may be patchy
		Ct	Coating \leq 1mm thick
		Filled	Coating > 1mm thick
	– Thickness	mm.t	Defect thickness measured in millimetres

APPENDIX A

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 μm to 2.36 mm
	medium	200 μm to 600 μm
	fine	75 μm to 200 μm
1		

MOISTURE CONDITION

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- **Moist** Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	_	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

SOIL STRUCTURE

	ZONING	CE	MENTING
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.
Pockets	Irregular inclusions of different material.		

GEOLOGICAL WEATHERED I Extremely	. ORIGIN N PLACE SOILS Structure and fabric of parent rock visible.
weathered material	
Residual soil	Structure and fabric of parent rock not visible.
TRANSPORTE	D SOILS
Aeolian soil	Deposited by wind.
Alluvial soil	Deposited by streams and rivers.
Colluvial soil	Deposited on slopes (transported downslope by gravity).
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
Lacustrine soil	Deposited by lakes.
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.

coffey **>**

Soil Description Explanation Sheet (2 of 2)

(Exclu	uding	FIE particle	LD IDENTIF s larger than 6	ICATI 50 mm	ON PROCEDURE and basing fractions	S on estimated mass)	USC	PRIMARY NAME
		arse 2.0 mm	EAN VELS ttle no es)	Wide amou	range in grain size a Ints of all intermediat	nd substantial e particle sizes.	GW	GRAVEL
3 mm i		/ELS alf of co r than 2	CLE GRA (Lit tin	Predo with r	ominantly one size or more intermediate siz	a range of sizes es missing.	GP	GRAVEL
SOILS than 6	Image: Construct of the state of the sta	GRAV than ha is large	/ELS FINES cciable bunt nes)	Non- proce	plastic fines (for ident	tification	GM	SILTY GRAVEL
AlINED ials less 0.075 m	e naked	More fraction	GRAN WITH (Appre amc of fir	Plast see C	c fines (for identificat L below)	ion procedures	GC	CLAYEY GRAVEL
ARSE GF of mater jer than	ble to th	arse 2.0 mm	AN IDS or ss)	Wide amou	range in grain sizes a ints of all intermediat	and substantial e sizes	SW	SAND
CO/ an 50% larg	ticle visi	IDS If of coa	CLE SAN (Lit fine	Predo with s	ominantly one size or some intermediate siz	a range of sizes zes missing.	SP	SAND
More th	llest par	SAN than ha	VDS FINES eciable ount nes)	Non- proce	plastic fines (for idented under the set of	ification).	SM	SILTY SAND
	the sma	More	SAI WITH (Appre amo	Plast see C	c fines (for identificat L below).	ion procedures	SC	CLAYEY SAND
	out		IDENTIFICAT	ION PI	ROCEDURES ON FR.	ACTIONS <0.2 mm.		
uan nan	s ab	(0	DRY STRENGTH		DILATANCY	TOUGHNESS		
01LS less th 075 mr	rticle i	CLAYS limit an 50	None to Low	/	Quick to slow	None	ML	SILT
IED SC aterial an 0.0	nm pa	LTS & _iquid ess the	Medium to H	ligh	None	Medium	CL	CLAY
SRAIN 6 of m aller th	.075 r	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT
FINE O in 50% is sm	(A 0	LAYS mit an 50	Low to medi	um	Slow to very slow	Low to medium	MH	SILT
ore tha		S & C quid li iter th	High		None	High	СН	CLAY
M W		SILT Lij grea	Medium to H	ligh	None	Low to medium	ОН	ORGANIC CLAY
HIGHL' SOILS	Y OF	RGANIC	Readily iden frequently by	tified b / fibrou	y colour, odour, spon s texture.	gy feel and	Pt	PEAT
• Low p	lasti	city – Liqu	uid Limit W _L les	s than	35%. • Medium plasti	city – W _L between 35%	6 and 50%.	

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	ALL DATE OF CONTRACT OF CONTRACT.
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

Rock Description Explanation Sheet (1 of 2)

The descriptive te	erms us	ed by Coffey are given below. They are broad	adly consi	stent with	Austra	lian Standard	AS1726-1993.		
DEFINITIONS: Rock Substance	Rock In eng disinte homo	substance, defect and mass are defined as follo ineering terms roch substance is any naturally o egrated or remoulded by hand in air or water. Of genous material, may be isotropic or anisotropio	ows: ccurring ag ther materi c.	gregate of al is descri	minera bed usi	ls and organic ing soil descrip	material which cannot be tive terms. Effectively		
Defect Mass	Disco Any bo more	ntinuity or break in the continuity of a substance ody of material which is not effectively homogeneo substances with one or more defects.	∍ or substa ous. It can c	nces. consist of tv	vo or mo	ore substances	without defects, or one or		
SUBSTANCE D	ESCR	IPTIVE TERMS:	F	ROCK SI	JBSTA	NCE STRE	NGTH TERMS		
ROCK NAME	Simpl geolo	e rock names are used rather than precise gical classification.	ſ	Term A ia	bbrev- ation	Point Load Index, I _{s(50)} (MPa)	Field Guide		
PARTICLE SIZE Coarse grained Medium grained Fine grained	Grain : Mainly Mainly Mainly	size terms for sandstone are: ? 0.6mm to 2mm ? 0.2mm to 0.6mm ? 0.06mm (just visible) to 0.2mm	N	Very Low	VL	Less than 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with a knife; pieces up to 30mm thick can		
FABRIC	Terms cleava	for layering of penetrative fabric (eg. bedding, age etc.) are:					be broken by finger pressure.		
Massive	No lay	ering or penetrative fabric.		0.11		01 to 03	Easily approximation with a knife:		
Indistinct	Layerin	g or fabric just visible. Little effect on properties.	L	LOW	L	0.1100.3	indentations 1mm to 3mm		
Distinct	Layeri easily	ng or fabric is easily visible. Rock breaks more parallel to layering of fabric.					pick point; has a dull sound under hammer. Pieces of core 150mm long by 50mm		
CLASSIFICATIO	ON OF	WEATHERING PRODUCTS					diameter may be broken by hand. Sharp edges of core may be friable and break		
Residual F Soil	RS	Soil derived from the weathering of rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.	,	Medium	М	0.3 to 1.0	during handling. Readily scored with a knife; a piece of core 150mm long by		
Extremely X Weathered Material	W	Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or can be remoulded in water. Original rock fabric still visible.	I	High	н	1 to 3	50mm diameter can be broken by hand with difficulty. A piece of core 150mm long		
Highly H Weathered Rock	iw	Rock strength is changed by weathering. The whole of the rock substance is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Some minerals are decomposed to alw marker be increased by					by 50mm can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.		
		leaching or may be decreased due to the deposition of minerals in pores.	Ň	Very High	VH	3 to 10	Hand specimen breaks after more than one blow of a pick; rock rings under		
Moderately N Weathered Rock	1W	The whole of the rock substance is discoloured, usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no longer recognisable.	F	Extremely	EH	More than 10	Specimen requires many		
Slightly S Weathered Rock	W	Rock substance affected by weathering to the extent that partial staining or partial discolouration of the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rock is recognisable; strength properties are essentially those of the		lotes on R	lock Su	Ibstance Strei	hammer.		
		fresh rock substance.	1	. In anisotrop perpendicu	bic rocks llar to the	the field guide to anisotropy. High	strength applies to the strength strength anisotropic rocks may		
Fresh Rock	-к	Rock substance unaffected by weathering.	2	break readi . The term "e	ly paralle extremely	el to the planar an / low" is not used	isotropy. as a rock substance strength		
Notes on Weather 1. AS1726 suggests substance weather not practical to de advantage in maki given in AS1726. 2. Where physical ar associated with ig	ring: the term ering con elineate b ing such nd chem neous ro	"Distinctly Weathered" (DW) to cover the range of ditions between XW and SW. For projects where it i between HW and MW or it is judged that there is no a distinction. DW may be used with the definition ical changes were caused by hot gasses and liquid cks, the term "altered" may be substituted for	is 3 ds	term. While makes it cle engineering The unconf anisotropic 10 to 25 tin different roo than higher	the term ear that r terms. ined con rocks w nes the p ck types.	n is used in AS17 naterials in that s npressive strengt hich fall across th joint load index I _s Lower strength r n rocks.	26-1993, the field guide therein trength range are soils in h for isotropic rocks (and le planar anisotropy) is typically (50). The ratio may vary for ocks often have lower ratios		

associated with igneous rocks, the term "altered" may be substituted for "weathering" to give the abbreviations XA, HA, MA, SA and DA.

Rock Description Explanation Sheet (2 of 2)

COMMON ROCK MA Term	I DEFECTS IN SSES Definition	Diagram	Map G Symbol	raphic Log (Note 1)	DEFECT SHAPE Planar	TERMS The defect does not vary in orientation
Parting	A surface or crack across which the rock has little or no tensile strength.		20		Curved	The defect has a gradual change in orientation
	Parallel or sub parallel to layering (eg bedding) or a planar anisotropy		20 20		Undulating	The defect has a wavy surface
	in the rock substance (eg, cleavage). May be open or closed.		Cleavag	e (Note 2)	Stepped	The defect has one or more well defined steps
Joint	A surface or crack across which the rock has little or no tensile strength.				Irregular	The defect has many sharp changes of orientation
	parallel to layering or planar anisotropy in the rock substance.			(Note 2)	Note: The assess influenced	ment of defect shape is partly by the scale of the observation.
					ROUGHNESS Slickensided	TERMS Grooved or striated surface, usually polished
Sheared Zone (Note 3)	Zone of rock substance with roughly parallel near planar, curved or				Polished	Shiny smooth surface
(1010 0)	closely spaced joints, sheared surfaces or other defects. Some of	A.	35		Smooth	Smooth to touch. Few or no surface irregularities
	intersect to divide the mass into lenticular or wedge shaped blocks.			[**]	Rough	Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40 		Very Rough	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.
Crushed Seam	Seam with roughly parallel almost planar boundaries, composed of	/ :.			COATING TER Clean	MS No visible coating
(Note 3)	disoriented, usually angular fragments of the host rock substance which may be more				Stained	No visible coating but surfaces are discoloured
	seam has soil properties.			17 1	Veneer	A visible coating of soil or mineral, too thin to measure; may be patchy
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface.		65		Coating	A visible coating up to 1mm thick. Thicker soil material is usually described using appropriate defect terms (eg, infilled seam). Thicker rock strength material is usually described as a vein.
Extremely	Seam of soil substance, often with		- 30		BLOCK SHAPI Blocky	TERMS Approximately equidimensional
Weathered Seam	gradational boundaries. Formad by weathering of the rock substance in place.		Internet	D	Tabular	Thickness much less than length or width
		Seam		~	Columnar	Height much greate than cross section
Notes on D 1. Usual	efects: Iy borehole logs show the true dip of defects a	and face sketch	es and sections th	e apparent dip	ı.	

- 2. Partings and joints are not usually shown on the graphic log unless considered significant.
- 3. Sheared zones, sheared surfaces and crushed seams are faults in geological terms.

			_			_			Bore shee	hol t:	e ID.		BH15-01 1 of 2	
Engir	ne	erin	g L	<u>.0</u> 0	g -	Bo	rehole		proie	ect	10.		GEOTWARA22	6584
lient:	TSA	MAN	AGEI	MEN	VT				date	sta	rted:		17 Nov 2015	000/
principal:									date	coi	nple	ted:	17 Nov 2015	
, project:	PRO	OPOSE	ED Bl	UILE	DING	;			loga	ed l	v:		AW.I	
ocation:	MU	SWFL	BRC	ок	CHOS	SPITA	4/		chec	ker	ł by:	·		
osition: E: 3	02157	7; N: 6428	356 (M	GA94)	<u> </u>	surface elevation: 178.63 m (AHD)	angle	e from h	oriz	ontal:	90°		
rill model: Er	nviro T	D104, Tr	uck mo	ounted	,			hole	diamete	er:1	100 m	ım		
drilling infor	rmatio	on			mate	erial sub	ostance		>					
t tration		samples &		(L	c log	ication	material description	e u	ency / density	pe	hand enetro- meter	-	structure and additional observations	
bene	vater		L (m)	depth	graphi	classif symbo	colour, secondary and minor components	moistu conditi	consiste	8	(kPa) 888	3		
3570	_		-	<u> </u>		С н С н	TOPSOIL: SILT: black, some roots.				111	TOPS	OIL	
				-		СП	Sandy CLAY: high plasticity, grey and orange, coarse grained sand, trace of fine grained,	<wp< td=""><td>031</td><td></td><td></td><td>RESID</td><td>DUAL SOIL</td><td></td></wp<>	031			RESID	DUAL SOIL	
- 9N		SPT	-178	-			sub-rounded gravel.							
CAS	ved	N*=14		1.0-	V////									
	Obser		-											
<u> </u>	No.			-			SANDSTONE: fine to coarse grained, pale grey and orange brown, extremely weathered, estimated		н	ļį	iii	WEAT	HERED ROCK	
		SPT 21, 33, 27 N*-60	-177	-			very low strength, remoulds to Sand.							
		11 -00		2.0-	· · · · ·									
				-										
			-176				Borehole BH15-01 continued as cored hole	_				ADT n	efusal	
				-						ļį	iii			
			-	3.0-						ļį	;;;			-
				-										
			-175	-										
				4.0-										
				-										
			474	-						ļį				
			-174	_										
				5.0-										
				-										
			-173	-										
				-						ļį	iii			
			+	0.0										
				-										
			-172	-	1									
				7.0-	-									
				-						li				
			-171	-	1									
				-	-									
nethod D auger d S auger s IA hand au	Irilling* crewing uger	g*	supp M m C ca	oort hud asing etration	I N	l nil	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample	classifica soil c based Classific	Ition syn Iescriptio I on Unifi cation Sy	nbol on ed sterr	<u> </u> & 1	Con VS S F	sistency / relative density very soft soft firm	1
v washdo			Water		 no res rangir refusa 	sistance ng to al	SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT)	oisture dry moist				St VSt H Fb	stiff very stiff hard friable	
W washbo * bit show e.g. AD/T B blank bi T TC bit V V bit	vn by s it	uffix	water	r V V V V V V V V V V V V V	Oct-12 wa el on date er inflow er outflow	sistance ng to al ater e shown	S split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	oisture dry moist wet p plastic l liquid li	limit mit			, St VSt H Fb VL L MD D VD	stiff very : hard friabl very loose medi dens very	stiff e loose e um dense e dense

		J						Davahala			
								Borenoie	D.	BH15-01	
Enai			a Carad Darak			sheet:		2 of 2			
Engi	nee	nng Lo	g - Cored Borer	1016	•		project no. GEOTWARA22				
client:	TSA I	MANAGEMEN	NT					date star	ted:	17 Nov 2015	
principal:								date com	npleted:	17 Nov 2015	
project:	PROF	POSED BUILI	DING					logged b	y:	AWJ	
location:	MUS	VELLBROOM	(HOSPITAL					checked	by:	DLK	
position: E:	302157; N	I: 6428356 (MGA94) surface elevation: 178	.63 m (A	(HD)		angle	from horizo	ontal: 90°		
drill model: E	Enviro TD1	04, Truck mounted	d drilling fluid:				hole o	diameter : 10	00 mm	vane id.:	
drilling info	ormation	material substan	се				rock mass defects				
			matorial description		octimated	complee		defect		additional observations and	

dı	rillir	ng ir	nform	ation	mate	rial substance					rock mass defects			
od &	ort	-	u)	(m) (nic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	n terisics, nponents	hering & ation	estimated strength & Is50	samples, field tests & ls(50) (MPa)	۶Q	defect spacing (mm)	additional obser defect desc (type, inclination, planarity thickness	vations and riptions r, roughness, coating, other)
meth	ddns	watei	RL (r	depth	grapł			weat	O=diametral ਤੋ ਙ. ±	a = axial; d = diametral	core & R(300 3000 3000	particular	general
			- 178	- - 1.0 —										
			-177	- - 2.0 — -										- - - - -
			-176			NO CORE: 0.90 m					09/			
			-	3.0	. o	PEBBLY SANDSTONE: coarse g	rained, brown,	XW -			0%		-Fractured rock	- - -
				-		fine grained, sub-angular to sub- sized rock fragments of ironstone	rounded gravel	HW						-
		-	_	4.0		basalt.		XW -			0%		Fractured rock	
		Not Observe	-174	-	0.0	PEBLY SANDSTONE: coarse g fine grained, sub-angular to sub- sized rock fragments of ironstone basalt.	rained, brown, rounded gravel e, siltstone and	HW		a=0.10 d=0.40			J JT, 15°, PL, VR, Fe SN	CN - Fe SN,
200			_	5.0	00	4.73 to 4.83 m: Pale grey, bleach	ied zone.	∖_ <u>Hw</u> _/ HW			70%		JT, 40°, PL, RO, Fe SN	10°, PL, RO, erwise descri
5			-173	-		SIDERITE: brown and dark grey, grained.	coarse	MW		a=9.30 d=1.20			— PT, 5°, PL, RO, Clay CC	s: PT, 0.
			-	6.0	. 0 0	PEBBLY SANDSTONE: coarse g fine grained, sub-angular to sub- sized rock fragments of ironstone basalt, extremely weathered mat	rained, brown, rounded gravel e, siltstone and erial remoulded	MW XW- HW		a=0.10 d=0.10	96%		- - PT, 10°, PL, RO, Fe SN	Defects are
))))			-172	- - 7.0		Borehole BH15-01 terminated at Target depth	6.50 m							
			-171	-										-
	method & support AS auger screwing graphic lo AD auger drilling t t CB claw or blade bit t t W washbore minifow complete drilling fluid loss complete drilling fluid loss PQ wireline core (85.0mm) partial drilling fluid loss complete drilling fluid loss PQ wireline core (85.0mm) water pressure test result (lugeons) for depth interval shown RQD = R				graphic log / core core rec (graphic sym no core core run & RQD barrel w RQD = Rock Qu	e recove	ry ^{material)} id ignation (%)	weathering RS residu XW extrem HW highly DW distinc MW moder SW slightly FR fresh "W replaced w strength VL very lox L low M medium H high VH very hig EH extrem	& altera al soil hely weat weathe ttly weat ately we y weath ith A for a w n gh	ation* athered red hered eathered ered ilteration	defect type PT parting JT joint SZ shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth RO rough VR very rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain VN veneer CO coating		

Start depth	n 2.60m	В	H15-01 BOX 1		End depth 6.50m
GEDTUARK	122658AA	BHI5-1 START CORING P	IT 2.60m		
21/	NO COBE (90	///		NO CORE 0.30/
J	NO LOVE				
4	Car and	the hard a find			
6		1	YE .	END OF BHIS-	1 AT 6.50M
- And		the based of the second states		the second s	AND STOCKED DE STAN
drawn	ELC		client:	TSA MANA	GEMENT
approved	DLK		project:	PROPOSED	BUILDING
date	23/11/2015	сопеу	title:	MUSWELLBROOK	HOSPITAL NSW
scale original	N/A		project no:	CORE PHOT	OGRAPH
size	A4		p. 0,000 no.	GEOTWARA22658AA	BH15-01

	····J		Borehole ID.	BH15-02
-			sheet:	2 of 2
Eng	ineering Log - (Cored Borenole	project no.	GEOTWARA22658AA
client:	TSA MANAGEMENT		date started:	17 Nov 2015
principal:			date completed:	17 Nov 2015
project:	PROPOSED BUILDING		logged by:	AWJ
location:	MUSWELLBROOK HOS	PITAL	checked by:	DLK
position: E	: 302170; N: 6428354 (MGA94)	surface elevation: 179.71 m (AHD)	angle from horizontal: 90°	
drill model	Enviro TD104 Truck mounted	drilling fluid	hole diameter :	vane id ·

4														
l u	rillir	ng in	form	ation	mate	rial substance					rock	mass defe	cts	
method &	support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain charac colour, structure, minor com	n terisics, nponents	weathering & alteration	estimated strength & Is50 ×= axial; O= diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	additional ob defect de (type, inclination, plana thickne particular	servations and escriptions arity, roughness, coating, ss, other) general
_			- -179 - -178	- - 1.0- - - - - - - - - - - - - - - - - - -										
		-	-177	-		start coring at 2.80m								
< doi: 10.00000000000000000000000000000000000</td <td></td> <td>-</td> <td>-</td> <td>3.0</td> <td></td> <td>NO CORE: 0.20 m PEBBLY SANDSTONE: fine to co brown, some fine to medium grai sub-rounded gravel sized rock fra and siltstone.</br></td> <td>barse grained, ned, agmnets of coal</td> <td>HW - MW</td> <td></td> <td></td> <td><u>0%</u> 40%</td> <td></td> <td>Fractured rock</td> <td>ź</td>		-	-	3.0		NO CORE: 0.20 m PEBBLY SANDSTONE: fine to co brown, some fine to medium grai 	barse grained, ned, agmnets of coal	HW - MW			<u>0%</u> 40%		Fractured rock	ź
		Not Observed	-176 -	4.0		NO CORE: 0.10 m PEBBLY SANDSTONE: fine to cc brown, some fine to medium grai sub-rounded gravel sized rock fra and siltstone.	parse grained, ned, agmnets of coal	HW - MW HW -		a=0.20 d=0.20	0%	<u>F* </u>	Weathered rock Fractured rock	10°, PL, RO, Fe Sl vise described
		-	-175	- 5.0 —		NO CORE: 0.20 m PEBBLY SANDSTONE: fine to co brown, some fine to medium grai sub-rounded gravel sized rock fra and siltstone.	barse grained, ned, agmnets of coal	MW XW - HW		a=0.40 d=0.10	27%		=]— Fractured rock _	fects are: PT, 0 - unless otherv
		-	-174	-	. o	NO CORE: 0.10 m PEBBLY SANDSTONE: fine grain some fine to medium grained, su gravel sized rock fragmnets of co extremely weathered, remoulds to 5.50 m; cohelo sized inclusion of	ned, brown, b-rounded al and siltstone, o Sandy Clay.	HW.	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	a=0.20 d=0.30	94%		=	
		-	- 173 -	- - 7.0- -		SILTSTONE: pale grey - orange I Borehole BH15-02 terminated at Target depth	brown. 6.00 m							-
j r	neth	nod &	-172	- ort		water	graphic log / core	e recove	ry	weathering	& altera	ation*	defect type	planarity
	AS auger screwing AD auger drilling CB claw or blade bit W washbore NMLCNMLC core (51.9 mm) NQ wireline core (63.5mm) PQ wireline core (63.5mm) SPT standard penetration test Water pressure test result						core rec (graphic syn no core core run & RQD	overed hools indicate recovere ithdrawn	e material)	RS residu XW extrem HW highly DW distinc MW moder SW slightly FR fresh ** replaced w strength VL very lov L low M medium	al soil lely weather tly weather ately weather weather th A for a w	athered red hered eathered ered ilteration	PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished	PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain

Er	ngi	ne	ering	gl	_0(g -	Bo	rehole		Bore shee proj	ehol et: ect r	e ID. no.	BH15-03 1 of 2 GEOTWARA22658A
clier oring	nt: cipal:	TS								date date	e sta e cor	rted: nplet	17 Nov 2015 ed: 17 Nov 2015
proje	ect:	гк MI	ISWEL I	RRI				M		che	jeu i	by:	
oositi	ion: E: 3	30219	03; N: 6428	347 (N	1GA94)		surface elevation: 181.23 m (AHD)	ang	gle from	horiz	ontal:	90°
Irill n	nodel: E	nviro	TD104, Tr	uck m	ounted	1			hol	e diamet	ter :		
drill	ing into	rmati	on			mate	Fial sub	stance material description		, iti		hand	structure and
method & support	1 2 penetratio	water	samples & field tests	RL (m)	depth (m)	graphic log	classificatio symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	conduon consistency relative dens	e pe	enetro- neter (kPa) 8 8 8	additional observations
				-181	-		СН	TOPSOIL: SILT: brown, some sand, trace roots. Sandy CLAY: high plasticity, pale brown, coarse	D <w< td=""><td>p VSt</td><td></td><td></td><td>TOPSOIL RESIDUAL SOIL</td></w<>	p VSt			TOPSOIL RESIDUAL SOIL
		lot Observed	SPT 7, 8, 8 N*=16	- 	- - - 1.0			grained sand, trace fine grained gravel.					-
		2	SPT 25/80mm HB N=R	-	2.0-	· · ·		SILTSTONE: pale brown, extremely weathered, remoulds to Clay.		Н			WEATHERED ROCK No SPT recovery
				-179	-								-
				- 178	3.0 -	-		Borenole BH15-03 continued as cored hole					-
				- -177	4.0-	-							-
				-	- - 5.0-								-
				-176	-	-							-
				-175	- 6.0 - -	-							-
				-174	- 7.0— - -	-							-
neth AD AS HA N	hand a washbo	drilling screwin uger bre wn by	∙ ng* suffix	supj M r C c pend wate	port mud casing etration etration er	N no res rangin refusa Oct-12 wa	nil istance g to l	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone	classifi soi bas Class Class moisture D dry M mois W wet Wp plast	cation sy I descript ed on Uni ification S t	mbol ion fied ystem	* * * * * <u> </u> &	consistency / relative density VS very soft S soft F firm St stiff VS very stiff H hard Fb friable VL very loose L loose

	J		Borehole ID.	BH15-03
	incoving Log (Parad Darahala	sheet:	2 of 2
Eng	ineering Log - C	Jored Borenole	project no.	GEOTWARA22658AA
client:	TSA MANAGEMENT		date started:	17 Nov 2015
principal:			date completed:	17 Nov 2015
project:	PROPOSED BUILDING		logged by:	AWJ
location:	MUSWELLBROOK HOSI	PITAL	checked by:	DLK
position: E	: 302193; N: 6428347 (MGA94)	surface elevation: 181.23 m (AHD)	angle from horizontal: 90°	
drill model:	Enviro TD104, Truck mounted	drilling fluid:	hole diameter :	vane id.:

d	Irilli	ng i	nform	ation	mate	rial substance					rock mass defects			
s por	bort	er.	(m	h (m)	hic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	n cterisics, nponents	thering & ation	estimated strength & Is50 ×= axial;	samples, field tests & Is(50) (MPa)	run QD	defect spacing (mm)	additional obs defect de (type, inclination, planar thicknes	ervations and scriptions ity, roughness, coating, s, other)
met	ddns	wate	RL (dept	grap			wea	O=diametral J」Σェヺ표	a = axial; d = diametral	core & R	30 300 3000 3000	particular	general
			-181 - -180	- - 1.0- -										
00.01 01			-179	- 2.0— -		start coring at 2.60m								- -
11111111111111111111111111111111111111			- -178	- 3.0 — -		NO CORE: 0.15 m PEBBLY SILTSTONE: pale grey brown, fine to coarse grained, su gravel sized rock fragments, extr weathered material remoulds to	and orange b-rounded emely Clay.	XW			0%		Weathered rock PP = 300Kpa	180Кра _
KAZZODOMA.GFJ < 		Vot Observed	- -177	- - 4.0		NO CORE: 0.25 m PEBBLY SILTSTONE: pale grey brown, fine to coarse grained, su gravel sized rock fragments, extr weathered material remoulds to 3.88 to 3.95 m: Cobble sized roc dolerite - (70m thick) brown, fine grained crystaline	and orange b-rounded emely Clay. k fragments of to medium	HW XW HW			40%		Weathered Rock	- - N, 60 mm, VN
		2	- -176	- 5.0 — -		granica officianici		XW - HW		a=0.10 d=0.10 a=0.10 d=0.10	59%		← PT, 0°, PL, RO, Fe Sh	- - - - - - - - - - - - - - - - - - -
			-	-		NO CORE: 0.15 m PEBBLY SANDSTONE: fine to c pale grey and orange brown, fine	oarse grained, to coarse	XW - HW					Weathered zone	-
	v		-175	- 6.0 - -		grained, sub-rounded gravel size fragments, extremely weathered remoulds to Sandy Clay. Borehole BH15-03 terminated at Target depth	6.00 m			d=0.10 d=0.10				
			-174	- 7.0 — - - -										- - - -
	method & support water grag AS auger screwing 10/10/12, water grag AD auger drilling level on date shown water inflow CB claw or blade bit water inflow complete drilling fluid loss NQ wireline core (51.9 mm) complete drilling fluid loss complete drilling fluid loss PQ wireline core (63.5mm) partial drilling fluid loss complete drilling fluid loss PT standard penetration test water pressure test result (lugeons) for depth interval shown RC				graphic log / cor core red (graphic syr no core core run & RQD barrel w RQD = Rock Qu	e recover overed holes indicate recovere ithdrawn ality Des	ry material) ed ignation (%)	weathering RS residu XW extrem HW highly DW distinc MW moder SW slightly FR fresh W replaced w strength VL very lov L low M mediun H high VH very hig EH extrem	& alter al soil hely we weathe tly wea ately w v weath th A for a v n h	ation* athered thered eathered ered alteration	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth RO rough VR very rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN CN clean SN stain VN veneer CO coating		

Start dept	n 2.60m		B	H15-03 BOX 1		End depth 6.00m
GEOTWA	RA22658AA	BH15-3 START	CORING	AT 2.60 M	NO LORE 0.15,1	
3 /	NO CORE 0.25		NI.			Contraction of the
4	3832		Cet So		N. C. S. Maria	
5	1 A	TUT		No case o	15.	
EOH		ининининининининининининининининининин	N N U N	4 4 4 4 4 4 4 4 5 5 5 6 5 4 5		the the start
0.00m						- 1 H - 42
drawn	ELC			client:	TSA MANA	GEMENT
approved	DLK		•	project:	PROPOSED	BUILDING
date	23/11/2015	сопеу			MUSWELLBROOK	HOSPITAL NSW
scale	N/A	4		title:	CORE PHOT	OGRAPH
original size	A4			project no:	GEOTWARA22658AA	borehole no: BH15-03

	'		Ξy							Borel	ا مام	<u>ר</u>	
_	_		_	_			_			sheet	t:	J.	БП 13-04 1 of 2
Eng	jin	e	erin	g l	_0	g -	Bo	rehole		proie	ct no.		GEOTWARA22658A
lient:	7	rs/	AMAN	AGE	MEN	νT				date	starte	d:	18 Nov 2015
rincipal	:									date	comp	eted	:: 18 Nov 2015
roject:	F	PR	OPOSE	ED B	UILL	DING	;			logge	ed by:		AWJ
ocation:	1	иυ	SWEL	LBR	oor	(HO	SPIT	AL.		checl	ked b	/:	DLK
osition: I	E: 30	218	7; N: 6428	319 (N	1GA94)		surface elevation: 184.10 m (AHD)	angle	from ho	orizont	al: 90)°
ill model	l: Env	viro	TD104, Tr	uck m	ounted				hole o	diamete	r :		
		nau				mate	S S	material description		/ sity	han	b	structure and
support 1 2 penetratio		water	samples & field tests	RL (m)	depth (m)	graphic log	classificatio symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency relative dens	penet mete (kPa)) ro-	additional observations
			E	-184	-			FILL: Sandy SILT: brown, fine grained sand, fome fine to medium grained gravel of asphalt. Trace	D			1	FOPSOIL / FILL
					-			Troots.	<wp< td=""><td></td><td></td><td>F</td><td>FILL -</td></wp<>			F	FILL -
ASING			SPT 9, 16, 10 №–26	F				brown, some fine to coarse grained sub-angular gravel and concreate, coal. Trace roots, trace				Ì	-
0			IN -20	-183	1.0-			fragments.				i.	-
		>			-							il.	
			SPT	-	-							į.	-
			N*=7	-	20-			FILL: Silty SAND: fine to coarse grained, brown -	D			i.	-
		ned		-182				gravel of rock, coal and brick.				il.	-
		ot Obse			-								-
		ž		[-			Sandy CLAV: high plasticity around brown accred	1M/m	Vet	-		
			SPT	-181	3.0-		СП	grained sand.	~vvp	vsi			LESIDUAL SUIL
			19, 32, 32 N*=64		-			SANDSTONE: medium to coarse grained, orange - brown and pale grey, trace fine grained gravel,				1	WEATHERED ROCK
				+	-			extremely weathered, very low strength , recovered as Clayey Sand.					-
					4.0-							Ì	-
	i			-180	-							i	-
	il.	-	SPT	-	-							il.	-
	il.	-	18, 38 HB N*=R		-							i	-
	+			179	5.0-			Borehole BH15-04 continued as cored hole				÷k	AD/T refusal
	il.				-							i	-
				F	-							i	-
	il.			-178	6.0-							i.	-
					-								-
				-	-								-
					-								-
				-177	7.0-								
					-								-
				F	-	1							-
nethod	í l			sup	port			samples & field tests c	lassificat	ion sym	bol &		- consistency / relative density
D aug S aug	ler dri Ier sci	lling* rewir	ig*	M r C c	mud casing	N	l nil	B bulk disturbed sample D disturbed sample	soil de based	on Unifie	ed .		VS very soft S soft
A han / was	d aug shbore	jer e		pen	etration	1		E environmental sample SS split spoon sample	Classific	ation Sys	stem		F firm St stiff
						 no res rangir refusa 	sistance ng to al	U## undisturbed sample ##mm diameter moi HP hand penetrometer (kPa) D N standard penetration test (SPT) M	sture dry moist				vot very stiff H hard Fb friable
bit s	showr T	n by s	suffix	wate	er ▼ 10- Iev	Oct-12 w	ater e shown	N* SPT - sample recovered W Nc SPT with solid cone Wp	wet plastic li	imit			VL very loose L loose
blar	nk bit			▶	wa	er inflow		VS vane shear; peak/remouded (kPa) WI R refusal	iiquia IIr	nit			MD medium dense D dense

CDF_0_9_064K PHOTO 4PP.GLB rev:AK_Log_COF BOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_<CDrawingFile>> 26/11/2015 16:32

 \mathbf{O} ~~~ _

Engineering Log - Cored Borehole

TSA MANAGEMENT client:

principal:

CORED

ş

SQF

Log

rev:AK

GLB

CEC

ĕ

PROPOSED BUILDING project:

MUSWELLBROOK HOSPITAL location:

position: E: 302187; N: 6428319 (MGA94) surface elevation: 184.10 m (AHD) angle from horizontal: 90° drill model: Enviro TD104, Truck mounted drilling fluid: hole diameter : vane id.: drilling information material substance rock mass defects material description estimated samples defect additional observations and defect descriptions (type, inclination, planarity, roughness, coating, strength & Is50 field tests spacing (mm) weathering 8 ROCK TYPE: grain characterisics, & ls(50) Ê alteration core run & RQD method support graphic colour, structure, minor components Ē thickness, other) X = axial; O = diametr (MPa) water depth a = axial; d = diametr 30 300 300 300 300 RL particular genera $1 > T = \overline{T}$ 184 |||||||||||||||||||||||||||||||| | | | | || | | | | |||||||||||||||| | | | |1.0 183 ||||||||||||| | | | ||||||||||||||||| | | | | |||||||||||||||2.0 ||||||||||||||||-182 1 1 1 1 1 |||||||||||||||||||||||||1 1 1 1 1 |||||||| | | | ||||||||||||||| | | | |3.0 181 ||. 4.0 |||||||||||||||180 1 | | | | ||||||||||||||||||||||||||||||||||||| | | | |||||||1111 ||||||||||||||5.0 start coring at 5.10m 179 NO CORE: 0.20 m | | | | | |0% ò **PEBBLY SANDSTONE:** coarse grained, XW | | | | | |-Weathered rock orange brown and pale grey, some fine to medium grained sub-rounded gravel sized rock 7111 XW PL, RO, Fe SN described HW ||||||||fragmnets. Trace roots to 6.1m Observed NO CORE: 0 30 m ò НW 6.0 Fractured Rock 13% NMLC-178 PEBBLY SANDSTONE: coarse grained, MW orange brown and pale grey, some fine to medium grained, sub-rounded gravel sized rock fragmnets of siltstone and ironstone and quartz. Not БЦ Weathered Rock s are: PT, 0 - 10°, unless otherwise | | |XW JT, 60°, PL, RO, Fe SN JT, 40°, PL, VR, Fe SN Fractured Rock ó MW Extremely weathered material remoulds to Sandy Ŷ a=0.20 Clay and Sand MW d=0.30 ò 6.15 m: Cobble sized rock fragments of dolerite. SW 80% 7.0 ects 177 ф> a=0.60 d=0.30 Borehole BH15-04 terminated at 7.30 m Target depth 1 1 1 1 ||weathering & alteration planarity defect type method & support water graphic log / core recovery parting joint shear zone PL planar CU curved UN undulating RS residual soil PT auger screwing auger drilling claw or blade bit extremely weathered highly weathered XW JT SZ AD CB 10/10/12, water core recovered HW DW distinctly weathered DW distinctly weathered MW moderately weathered SW slightly weathered FR fresh W replaced with A for alteration strength level on date shown SS shear surface ST stepped Ŵ washbore water inflow CO contact IR Irregular NMLCNMLC core (51.9 mm) NQ wireline core (47.6mm) HQ wireline core (63.5mm) CS SM crushed seam complete drilling fluid loss no core recovered NQ HQ PQ seam partial drilling fluid loss core run & RQD wireline core (85.0mm) standard penetration very low low coating CN clean SN stain VN venee SPT VL roughness barrel withdrawn SI slickensided test water pressure test result medium POL polished M 25uL RQD = Rock Quality Designation (%) high very high SO (lugeons) for depth н smooth veneer interval shown vн RO rough CO coating VR very roi

hiał

Borehole ID. BH15-04 2 of 2 sheet: GEOTWARA22658AA project no. date started: 18 Nov 2015 date completed: 18 Nov 2015 logged by: AWJ DLK checked by:

Start dept	1 5.10m	B	H15-04 BOX 1		End depth 7.30m
GEOTLARA 12658 START CORING	AT 5.10 NO CO	RE 92 m	- And	NO CORE	0.3
6		A A A A A A A A A A A A A A A A A A A		*	
7	Par 1	END OF BHIS-4	-		
		ищи — — — — — — — — — — — — — — — — — —)		
		l	client:		
drawn	ELC		project:	TSA MANA	GEMENT
approved	DLK		ρισμοι.	PROPOSED	BUILDING
date	23/11/2015	coney •	title:	MUSWELLBROOK	
scale	N/A		project no:		
size	A4			GEOTWARA22658AA	BH15-04

coffey

sheet: **Engineering Log - Cored Borehole** project no. TSA MANAGEMENT client: date started: date completed: principal: **PROPOSED BUILDING** logged by:

Borehole ID.

checked by:

BH15-05 2 of 2

18 Nov 2015

18 Nov 2015

AWJ

DLK

GEOTWARA22658AA

project:

MUSWELLBROOK HOSPITAL location:

posi	tion:	E: 302	2153; N	N: 6428	324 (MGA94) surfa	ace elevation: 180	.31 m (A	AHD)		angl	e from horiz	ontal: 90°		
drill	mode	el: Env	iro TD	104, Ti	ruck mounted drillin	ng fluid:				hole	diameter :		vane id.:	
dril	ling i	inform	ation	mate	erial substance					rock	mass defe	cts		
lethod & upport	ater	L (m)	epth (m)	raphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	n cterisics, nponents	eathering & teration	estimated strength & Is50 X = axial; O = diametral	samples, field tests & Is(50) (MPa) a = axial;	ore run k RQD	defect spacing (mm)	additional obs defect de (type, inclination, plana thicknes	servations and escriptions rity, roughness, c ss, other)	oating,
<u> </u>	~	-180	- - - 1.0-				5 0			0.0	31 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	pentocial		
		-179 - -178 -												
	Not Observed	-177			PEBBLY SANDSTONE: coarse g fine to coarse grained gravel size fragments, recovered as fine to co gravel and sand. NO CORE: 0.15 m PEBBLY SANDSTONE: coarse g fine to medium grained gravel size fragments. trace cobble sized roo inneous (delerite2) rock	grained, brown, ed rock coarse grained grained, brown, zed rock ck fragments of	XW MW MW		a=0.30 d=0.50	0%		→ Weathered rock → JT, 20°, PL, RO, Fe S → JT, 25°, PL, RO, Fe S → JT, 20°, PL, RO, Fe S → JT, 20°, PL, RO, Fe S → JT, 90°, PL, RO, Fe S	5N SN SN SN, 70 mm	rT, 0 - 10°, PL, RO, Fe SN, otherwise described
		-175	- 5.0 - - -		Borehole BH15-05 terminated at Target depth	5.00 m	:	x<4 (2)	a=0.00 d=0.40					Defects are: F unless
		- -174	- 6.0 - -											
		-173	 7.0 											-
me AS AD CB W NM NQ HQ PQ SP	thod au au cla wa ILCNN win win win tes	& supp ger scre ger drill aw or bla ashbore MLC con reline co reline co andard p st	ort ewing ing ade bit re (51.9 ore (51.9 ore (63. ore (85.0 ore (85.0 ore (85.0)	mm) 6mm) 5mm) 0mm) tion	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth	graphic log / cor core red (graphic sy no core core run & RQD barrel w RQD = Rock Qu	re recover covered mbots indicate recovere vithdrawn uality Des	ry material) ed	weathering RS residu XW extrer HW highly DW distind MW mode SW slightl FR fresh *trength VL very lo L low M mediur H high	& altera lal soil nely wea weathe ctly weat rately we y weath w th A for a w	athered red thered sethered eathered ered	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth	planarity PL planar CU curved UN undulatii ST stepped IR Irregular CN clean SN stain VN veneer	ng

Start dant	2.10m				End donth 5 00m
Start dept	1 3. IUIII a. s. s. r. s. 10 yr 12 yr 14 15 16 17	unn 🕐 מא שאר ב אר מ מ א א א א א א א א א א א א א א א א	H15-05 BUX 1		
(1071-022)2658	שמתיכו תי שאיצוע במיצרי צובד רוסי	HE SILHEISCHE HERIRE	////		Xo.
BHIS-5 START	3.In	NO CORE 0.54			The cone of St
4			- the	Atri	The second second
END OF BH	15-5		al market		and the second
			client:		OFMENT
arawn	The second secon		project:		
date	ULK 23/11/2015	coffey			
scale	23/11/2013	Solicy	title:	CORF PHOT	OGRAPH
original	A4		project no:	GEOTWARA22658AA	borehole no: BH15-05
size					

			Borehole ID.	BH15-06
		a wa al Dawaha la	sheet:	2 of 2
Engi	neering Log - Co	ored Borenole	project no.	GEOTWARA22658AA
client:	TSA MANAGEMENT		date started:	18 Nov 2015
principal:			date completed:	18 Nov 2015
project:	PROPOSED BUILDING		logged by:	AWJ
location:	MUSWELLBROOK HOSPI	TAL	checked by:	DLK
position: E:	: 302139; N: 6428326 (MGA94)	surface elevation: 178.53 m (AHD)	angle from horizontal: 90°	
drill model:	Enviro TD104, Truck mounted	drilling fluid:	hole diameter : 100 mm	vane id.:
drilling inf	ormation material substance		rock mass defects	

d	rillir	ng ii	nform	ation	mate	rial substance	tance							rock mass defects					
ethod &	pport	ater	- (m)	pth (m)	aphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	n cterisics, nponents	eathering & eration	estimated strength & Is50 × = axial; O = diametral	samples, field tests & Is(50) (MPa) a = axial:	re run RQD	defect spacing (mm)	additional ob defect d (type, inclination, plan thickne	oservations and lescriptions arity, roughness, coatin ess, other)					
<u>m</u>	SU	^w	<u>∼</u> -178		ub			alt		G d = diametral	<u>S</u> &		particular	gene -					
			-177																
05:01 61.02/11			-176	-		start coring at 2.80m													
< <ur> <<ur> <<ur> ><ur> X X X X X</ur></ur></ur></ur>	-	I5 06:30 12:00 I⊲	-175	3.0		NO CORE: 0.35 m PEBBLY SANDSTONE: coarse g and pale brown, some fine to me sub-angular gravel sized rock fra	grained, brown dium grained, gments.	XW - HW MW		_	0%		JT, 20°, PL, RO, infi Fractured rock	Il roots					
		19/11/1	-	4.0	0	4.10 m: Cobble sized rock fragm green (110mm thick)	ent if dolerite,			a=0.20 d=0.20	88%		- PT, 10°, PL, RO, Fe	0, PL, RO, Fe St se described					
			-174 -	- 5.0 — - -		PEBLY SANDSTONE: coarse g some fine to coarse grained grav frangments of siltstone and quart cobbles.	grained, brown, rel sized rock iz. Trace			a=0.60 d=0.50	59%		SM Clay, 0°, PL, 4 n	nm SN - Clay CO					
	,		-	6.0 -		Borehole BH15-06 terminated at Target depth	5.90 m			d=0.40			SM Clay, 0°, PL, 10	mm 🛉					
			-172	- - 7.0 —															
CDF_0_4			-171	-															
	meth AS AD CB W NML NQ HQ PQ SPT	od a aug cla wa ONM win win sta tes	& supp ger scre ger drill w or bla shbore lLC cor eline co eline co eline co ndard p t	ort ewing ade bit e (51.9 ore (47.6 ore (63.5 ore (85.0 benetrat	mm) Smm) Smm) Omm) ion	water	graphic log / corr core rec (graphic sym no core core run & RQD barrel w RQD = Rock Qu	e recover overed ibols indicate recovere ithdrawn ality Des	ry ^{material}) ed	weathering RS residu XW extrem HW highly DW distinc MW moder SW slightly FR fresh *Wreplaced w strength VL very lox L low M medium H highly	& alter al soil hely wea weathe tily wear ately w y weath ith A for a w	athered red thered eathered ered alteration	defect type PT parting JT joint SZ shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL SIckensided POL POL polished SO smooth	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain VN veneer					
						(lugeons) for depth interval shown	RQD = Rock Qu	ality Des	ignation (%)	H high VH very hig EH extrem	gh ely high		SO smooth RO rough VR very rough						

	- •	- J								-	Hole ID).	BH15-06
Eng	in	eerir	na I	Log	- 1	Bo	rel	nol	е		sneet:		
lient [.]		ΔΜΔΝ			-						date st	no.	18 Nov 2015
			-0 <i>L</i> /								data aa	molot	ad: 19 Nov 2015
incipai.			ים ם-										
project:	Р	CPUSE	D BC	JILDII	NG						logged	by:	AWJ
ocation:	М	JSWEL	LBRC	DOK	IOS	PITA	L				checke	d by:	DLK
osition: E:	3021	39; N: 6428	326 (M	GA94)			surfac	e eleva	tion: 178.53 m (AHD)	angle f	rom horiz	zontal:	90°
drillina inf	iype: E	ion	well	details	mat	terial s	ubstan	се		noie di	ameter :	100 m	n
ju								ы	material description	n		' / isity	structure and
support support	water	samples & field tests		BH15-06	RL (m)	depth (m)	graphic lo	classificat symbol	SOIL TYPE: plasticity or particle colour, secondary and minor of	characteristic, components	moisture condition	consistency relative den	additional observations
	,, <u> </u>	U50			-	-			FILL: Silty SAND: fine to media	um grained, ined gravel of	D	_	FILL -
	 15 17:30				-178	-		СН	coal and pottery fragments. Tra Sandy CLAY: high plasticity, or	ace of rootlets.	~Wp	VSt	RESIDUAL SOIL
ASING	18/11/					-			fine to coarse grained sand.				
o						1.0-			SANDSTONE: coarse grained, and orange, some fine to medii sub-rounded gravel rized rock t extremely weathered, very low remoulds to Clayey Sand.	pale brown um grained, fragments, strength,			U50 refusal
- 		SPT 10, 11, 27			-177	-	· · · · ·						
		N*=38			_	2.0-							-
						-	· · · · ·						-
			· . · .		-176	-							-
									Borehole BH15-06 continued as NO CORE: 0.35m (2.80-3.15 m	cored hole			
		-				3.0-				,			-
	<u>- 2</u> - 66	-				-			PEBBLY SANDSTONE: coarse brown and pale brown, some fi	e grained, ne to medium			
	/35/06	d=0.2			-175	-			fragments, moderately weather	ed lock red, very low -			
	19/11	a=0.2				40-	· · · · · · · · · · · · · · · · · · ·		very high strength.				
						-	. o		4.1 m: Cobble sized rock fragm	ent if dolerite,	-		:
					-174	-	0 		PEBBLY SANDSTONE: coarse	grained,			
		d=0.5				-			brown, some fine to coarse gra sized rock frangments of siltsto	ined gravel ne and quartz.			
		a=0.6			-	5.0-	 . o		Trace cobbles, moderately weal low to medium strength.	athered, very			-
	i					-	0						-
		d=0.4			-173	-	. o						
		d=0.4 a=0.4				-	0						
					-	6.0-			Borehole BH15-06 terminated a Target depth	at 5.90 m			standpipe BH15-06 details:
						-							2.9-m: screen
					-172	-							-
						-							
					F	/.0-							-
					474	-							
					-1/1	-							-
						-	<u> </u>			-1			
nethod AD auger	r drilling)* t	supp M m	ort ud	N	nil	s E	amples	& field tests bulk disturbed sample	classification soil des	on symbo	18	consistency / relative density VS very soft
AS auger IA hand	r screw auger	ing^	C ca	asing			E)	disturbed sample environmental sample	based o Classificat	ion Syster	m	S soft F firm
w washi	nole				no resist	ance	l S	iS ##	split spoon sample undisturbed sample ##mm diameter	moisture			St stiff VSt very stiff
			water	r r	ranging t refusal	to		וץ ו∗	nand penetrometer (kPa) standard penetration test (SPT) SPT - sample recovered	D dry M moist W wet			H hard Fb friable
bit sh e.g. AD/T	own by	suffix		10-Oct- level or	-12 wate n date sl	er hown		lc /S	SPT with solid cone vane shear: peak/remouded (kPa)	Wp plastic lin WI liquid limi	nit t		L loose
b blank TC bi	DIT †		┣─	water in	ntlow		R I		refusal				D dense

Start dept	n 2.80m		BH15-06 BOX 1		End depth 5.90m
GEOT	WARA22658AA	BHIS-6 START	CORING AT	2.80m	NO CORE 0.35M
al/	11/1		1 ACIS		ar ar 11
4	1 - Charles	T		1.7	1 1 1 2
5	1	-			END AT 5 9m
	3.0.4 5 5 7 8 9 10 11 12 13 14 15 16 17	и —		199	
drawn	FLC		client:	τςα μανά	GEMENT
approved	DLK.		project:	PROPOSED	BUILDING
date	23/11/2015	coffev		MUSWELLBROOK	HOSPITAL NSW
scale	N/A	J	title:	CORE PHO	OGRAPH
original size	A4		project no:	GEOTWARA22658AA	borehole no: BH15-06

A TETRA T	ECH CO	MPANY								Borel	nole ID.	BH16-01
End	ain	oor	inc	ч I	0	a -	R۸	rehole		shee	t:	1 of 11
LI	ym	CCI	шć	<u>ا ا</u>	_0	<u>y -</u>		lenole		proje	ct no.	GEOTWARA22658AA
client:	Н	EALT	TH IN	IFR	AS7	RUC	TUR	Ē		date	started:	14 Jun 2016
princip	al:									date	comple	ted: 17 Jun 2016
project	: P	ROPO	OSE	DВ	UILI	DING				logge	ed by:	ТТ
location	n: M	IUSW	ELL	BR	oor	K HOS	SPIT	AL.		checl	ked by:	SJB
position:	E: 302	2157; N:	64283	39 (N	1GA94	L)		surface elevation: 179.15 m (AHD)	angle	e from he	orizontal:	90°
drill mod	lel: , Tri	uck mou	nted			_		drilling fluid:	casin	g diame	eter : PW	
drilling	inform	ation				mate	rial sul	ostance				
method & support	penetration	samp field	oles & tests	RL (m)	depth (m)	graphic log	classificatior symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative densit	hand penetro- meter (kPa) 8 8 8 8	structure and additional observations
		-	-	-179 - -				FILL: Gravelly CLAY: low plasticity, brown, fine to medium subangular gravel.	>Wp			FILL
			-	- -177	2.0-			Sandy CLAY: medium to high plasticity, pale grey, some fine to medium subangular gravel.	<wp< td=""><td>St to VSt</td><td></td><td></td></wp<>	St to VSt		
PW casing			-176							HIGHLY WEATHERED ROCK		
			-	- -175	4.0-			Becoming orange brown.	_			
			-	- -174				pale grey, fine to medium subangular gravel, some clay.				
			-	-173	6.0-			PEBBLY SANDSTONE : fine to medium grained, grey and brown, fine to medium sized subangular clasts.				MODERATELY WEATHERED TO SLIGHTLY WEATHERED
			-	-172		· · · · · · · · · · · · · · · · · · ·						
				-171	8.0-							TTTTTTTTT
			-	-170		· · · · · · · · · · · · · · · · · · ·		Becoming grey.				SLIGHTLY WEATHERED ROCK
			-	-169	10.0-	0						
			-	-168		0 . 0 0						л

	-168o o o o o o			JT
method AD auger drilling* AS auger screwing* HA hand auger W washbore	support M mud N nil C casing penetration	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample	classification symbol & soil description based on Unified Classification System	consistency / relative density VS very soft S soft F firm St criff
* bit shown by suffix e.g. AD/T B blank bit T TC bit V V bit	water 10-Oct-12 water level on date shown water vater outflow	U## undisturbed sample U## undisturbed sample #mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	moisture D dry M moist W wet Wp plastic limit WI liquid limit	St Sulf VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

ATETRA	TECH	COMP	ANY											Borel	hole	e ID.		BH1	6-01		
Fn	aiı	no	orin	n I	0	- r	R۵	roho	مار					sheet	t:			2 of 11			
	gii			<u>y</u> 1	_0	<u>J</u> -				;				proje	ct r	10.		GEO	TWARA	2265	<u>8</u> A
client:		HE	ALIHI	NFR	ASI	RUC	IURE							date	sta	rted:		14 Ju	n 2016		
princip	oal:		00005											date	cor	nplet	ed:	17 Ju	n 2016		
project	t:	PR		:D B				.,						logge	d k	oy:					
locatio	n: ה די ל		SVVELL	BR			SPILA	4L	alau	ation: 170 15			on al a	check	ked	l by:	00%	SJB			_
drill mod	del:,	Truck	mounted	339 (N	/IGA94)		drilling	fluid:	auon: 179.15	m (AHD)		casin	g diame	eter	: PW	90-				
drilling	g info	rmatio	on	1		mate	rial sub	ostance							1						
nethod & support	penetration	vater	samples & field tests	3L (m)	depth (m)	graphic log	classification symbol	SOI	L TYF olour,	material des PE: plasticity or p secondary and	cription particle character minor componen	stic, ts	moisture	consistency / elative density	pe r	nand enetro- neter (kPa) 8 8 8		str additior	ucture and al observat	ions	
		16 mbgl,13/07/16,cased to 5.5 m ∳d		āz -167 - -166 - -165 - -164 - -163 - -164 - -163 - -164 - -163 - -164 - -163 - -161 - -161 - -161 - -159 - -158 - -157 - -156				PEBBLY grey and clasts. (or Gravel co INTERLA SILTSTO clasts.	SAN brow ontine mpol	DSTONE: fine n, fine to med ued) nent proportio ATED CLAYS grey, some fin	to medium gra ium sized suba n decreases. TONE AND e to medium si	ined, ngular			100		Some SLIGI JT JT FRES	shale oi TTLY WI	? EATHEREI		<u> </u>
method support AD auger drilling* AS auger screwing* HA hand auger W washbore * bit shown by suffix e.g. AD/T B blank bit T TC bit				N no res rangin refusa Oct-12 wa el on date er inflow ter outflow	nil istance g to i ater shown	Samp B D E SS ## HP N N C S R U FR	bles & bi di ei si si S S Vi tre	i field tests ulk disturbed sam sisturbed sample nvironmental sa plit spoon samp nodisturbed sam and penetromet tandard penetra PT - sample rec amper housin PT with solid cc ane shear; peak fusal ammer hoursch	mple mple le oble ##mm diamer er (kPa) tion test (SPT) vovered ne /remouded (kPa)	er mo D M W Wp W1	classificat soil de based Classific isture dry moist wet plastic l liquid lir	tion sym escriptio on Unifie ation Sys	bol n ed stem	&	- COT VS S F St VS H Fb VL L D D V	nsistency	/ relative de very soft soft firm stiff very stiff hard friable very loose nedium of dense very dense	ensity e lense			

A TETRA	A TECH	COMP	ANY							Borel	nole ID.	BH16-01
En	ai	no	orin	а I	~	ч _	Bo	robolo		sheet	t:	3 of 11
	iyi			y ı	-0(J -	BU			proje	ct no.	GEOTWARA22658A
client	t:	HE	ALTH	NFR	AST	RUC	TURE			date	started:	14 Jun 2016
princi	ipal:									date	complete	ed: 17 Jun 2016
proje	ct:	PR	OPOSE	D B	UILE	DING				logge	ed by:	TT
locati	ion:	МL	ISWELL	BR	оок	HOS	SPITA	L		check	ked by:	SJB
positic	on: E::	30215	57; N: 6428	339 (N	/IGA94)		surface elevation: 179.15 m (AHD)	angle	from ho	orizontal:	90°
drill m	odel: ,	Truc	k mounted					drilling fluid:	casin	g diame	eter : PW	
ariiii		ormati	on			mate		stance material description		ţi	hand	structure and
ethod & upport	penetratio	ater	samples & field tests	r (m)	epth (m)	aphic log	assificatio mbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	oisture	insistency lative dens	penetro- meter (kPa)	additional observations
ы Б	3 6 7	Š			ð	gr	S C	INTERLAMINATED CLAYSTONE AND	E ö	2 e	4 3 2 2 4	FRESH ROCK
				- -154	-			SILTSTONE: grey, some fine to medium sized clasts. (continued)				
				-	-							
				-153	26.0-							
				-151	- 28.0—			27.4 to 27.5 m: 100mm white siltstone bed, brittle?				JT on rock bed
				-	-							
				-150 -	-							Small breakout and JT
- CB -				-149	30.0-			30.0 to 30.2 m: 200mm conglomerate bed.				
				-148	-							
				-147	32.0-							
				-146	-			32.8 to 32.9 m: 100mm white bed.				
				-145	34.0							JT JT, loose rocks in sidewall
				-144 -	-							JT
AD AS HA W	method AD auger drilling* AS auger screwing* HA hand auger W washbore support M mud C casing penetration					N - no res	nil istance g to	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa)	classificat soil de based Classific bisture drv	iion sym escriptio on Unifie ation Sys	bol & n ed stem	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard
* e.g. B T V	* bit shown by suffix e.g. AD/T B blank bit T TC bit V V bit					✓ refusa Oct-12 was Oct-12 was on date on date or inflow er outflow	ſ ater shown	N standard penetration test (SPT) M N* SPT - sample recovered W Nc SPT with solid cone W VS vane shear; peak/remouded (kPa) W R refusal HB hammer bouncing	moist wet plastic l liquid lir	imit nit		Fb friable VL very loose L loose MD medium dense D dense VD very dense

CDF_0_9_06_LIBRARY.GLB rev.AM Log_COF BOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_<<DrawingFile>> 02/08/2016 13:10

ATE	TRA TECH	COMF	ANY										Borel	nole ID.		BH16-01	
F	nai	no	orin	a I		N _	Ro	robol	<u> </u>				sheet	t:		4 of 11	
	ngi	ne	enn	y ı	_U	J -	DU	renor	e				proje	ct no.		GEOTWARA226	<u>58A</u> A
clie	ent:	HE	ALTHI	NFR	AST	RUC	TUR	Ε					date	started:		14 Jun 2016	
prii	ncipal:												date	complet	ed:	17 Jun 2016	
pro	ject:	PR	OPOSE	ED B	BUILL	DING							logge	ed by:		ТТ	
loc	ation:	МL	ISWELI	LBR	OOK	(HOS	SPITA	4 <i>L</i>					checl	ked by:		SJB	
pos	ition: E:	30215	57; N: 6428	339 (N	/IGA94)		surface ele	evation: 179.15	m (AHD)		angle	from he	orizontal:	90°		
drill drill	model: ,	ormat	k mounted			mate	rial sub	drilling flui	d:			casing	g diame	eter : PW			
	tion					ŋ	tion		material dese	cription			y / nsity	hand		structure and	
method &	support 1 2 penetra: 3	water	field tests	RL (m)	depth (m)	graphic lo	classifica symbol	SOIL T colou	YPE : plasticity or p ur, secondary and r	article characteristic, ninor components	,	moisture condition	consistenc relative der	(kPa)		additional observations	
CDF_0_9_06_LIBRARY.GLB.rev.AM_tog_COF_BOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_<-DrawingFile>> 02/08/2016 13:10 CB				-143 - -142 - -141 - -139 - -139 - -138 - -137 - -136 - - -136 - - -135 - - 135 - - 134 - - - 132 -	38.0- - - 40.0- - - - - - - - - - - - - - - - - - -			INTERLAMI SILTSTONE clasts. (cont 38.9 to 39.0 COAL: black INTERBEDI fine to medi white clasts.	NATED CLAYST grey, some fine inued) m: 100mm white k, dull. DED SILTSTONE um grained, grey	Pone AND to medium sized bed.	NE t				FRES Break Small Break Trianç Bridge	HROCK out out breakout out gular breakout on JTs	¢
me AD AS HA W * e.g B T	method AD auger drilling* AS auger screwing* HA hand auger W washbore support M mud C casing penetration * bit shown by suffix e.g. AD/T B blank bit T TC bit water					N no res rangin refusa Oct-12 wa el on date ter inflow	nil istance g to l ater shown	I Samples B D E SS U## HP N N* NC VS R ⊔C	s & field tests bulk disturbed sample environmental sar split spoon sampl undisturbed samp hand penetromete standard penetrat SPT - sample reco SPT with solid cor vane shear; peak refusal	nple e le ##mm diameter rr (kPa) ion test (SPT) overed remouded (kPa)	Cla moise D W W WP WI	assificat soil de based Classifica ture dry moist wet plastic li liquid lir	Lion sym escriptio on Unifie ation Sys	bol & n ed stem	Cor VS S St VSt H Fb VL L MD D	Asistency / relative density very soft soft firm stiff very stiff hard friable very loose loose medium dense dense	

A TETRA TECH	H COMPANY							Bore	hole ID.		BH16-01	
Enai	inoorin	~ I	~~	. I	Bar	oholo		shee	t:		5 of 11	
Eng	meenm	y L	-06	J - I	DUI	enole		proje	ct no.		GEOTWARA2265	5 <u>8A</u> A
client:	HEALTH I	NFR/	ASTI	RUC	TURE			date	started:		14 Jun 2016	
principal:								date	complete	ed:	17 Jun 2016	
project:	PROPOSE	ED B	UILD	NG				logge	ed by:		тт	
location:	MUSWEL	LBRO	оок	HOS	SPITA	-		chec	ked by:		SJB	
position: E	: 302157; N: 6428	339 (M	IGA94)		surface elevation: 179.15 m (AHD)	ang	le from h	orizontal:	90°		
drill model:	, Truck mounted					drilling fluid:	casi	ng diame	eter : PW			
drilling inf	formation	<u> </u>		mater	rial subs	ance						
ethod & upport penetration	samples & field tests	r (m)	epth (m)	aphic log	assification /mbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	oisture	insistency / lative densit	hand penetro- meter (kPa)		structure and additional observations	
, ₅ , 5 ∃	" ≥́	<u>~</u> −131	ð	 	ŵ d	INTERBEDDED SILTSTONE AND SANDSTON	E S	0 e	4 3 3 3 4	FRES	HROCK	_
CB		-131 -130 -129 -129 -128 - 128 - 127 -127 - 126 - - 125 - - - 125 -	50.0			white clasts. <i>(continued)</i>				JT/P1		······································
		- -123 - -122 - 121				55.8 to 56.1 m: 300mm brown bed. INTERLAMINATED CLAYSTONE AND SILTSTONE: some fine to medium sized clasts.						
		-120 -				59.7 m: 100mm brown bed.				JT		
method AD auge AS auge HA hand W wash * bit sh e.g. AD/T B blank T TC bit V V bit	r drilling* r screwing* auger bore www.by suffix s bit it	supp M m C cc penee wate	ort nud asing etration etration etration level level wate wate	N - no resis ranging ⊲ refusal Dct-12 wat to n date : er inflow er outflow	nil stance g to ter shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classification symbol & soil description based on Unified Classification System Disture dry moist wet o plastic limit liquid limit			hsistency / relative density very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense		

02/08/2016 13-10 100000 AD / VICEO ú ЦС POL MA LIBRARY.GLB CDF 0 9 06

A TETRA TEC	CH CO	MPANY								Borel	nole IE).	BH16-01	
Eng	iin	oorin			- r	R۸	rehole			sheet	:		6 of 11	
	<u>, , , , , , , , , , , , , , , , , , , </u>		<u></u>		<u>J</u> -					proje	ct no.		GEOTWARA226	<u>58A</u> A
client:	н	EALTH	INFR	AST	RUC	TUR	=			date	starteo	1:	14 Jun 2016	
principal	l: _									date	compl	eted:	17 Jun 2016	
project:	Р	ROPOS	ED E	BUILL	DING					logge	ed by:		π	
location:	: M	USWEL	LBR	OOK	(HOS	SPITA	AL			chec	ked by	:	SJB	
position:	E: 302	157; N: 642	8339 (N I	/IGA94)		surface elevation: 179.15 m (AHD)	ar	ngle	from he	orizonta	l: 90°		
drilling in	nform	ation			mate	rial sub	ostance		asing	gularite		v		
& ation		samples a	2		бо	ation	material description		-	cy / ensity	hand	0-	structure and additional observations	
method a support	3 perietic	field tests	RL (m)	depth (m	graphic I	classifica symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	conditior	consisten relative de	mete (kPa) 8 8 8	⁶⁴		
			-119 -118 -117 -118 -117 -116 -116 -115 - -115 - -115 - -114 - -113 - -114 - -113 - -114 - -114 - -117 - -117 - -117 - -116 - -117 - -117 - -118 - -117 - -118 - -117 - -118 - -117 - -117 - -117 - -117 - -117 - -118 - -117 - -116 - -117 - 117 - 117 - 	62.0- - - - - - - - - - - - - - - - - - -			INTERLAMINATED CLAYSTONE AND SILTSTONE: some fine to medium sized clasts. (continued) Grey and brown bedding. COAL: black, dull. INTERBEDDED SILTSTONE AND SANDSTONE fine to medium grained, yellow and grey. Some carbonaceous laminations.					I FR	ESH ROCK	
method AD aug AS aug HA han W was • bit s e.g. AD/ B blar T TCC	method support AD auger drilling* AS auger screwing* HA hand auger W washbore * bit shown by suffix e.g. AD/T B blank bit T TC bit				N no ress rangin refusa Oct-12 wa el on date ar inflow ter outflow	nil istance g to l ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	classi so ba Class Class Moisture D dry M moi W wet W wet W p pla: WI liqu	ificati oil de ased o ssifica e ist t stic lin id lim	ion sym escriptio on Unifie ation Sys mit mit	bol & n ed item		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

A TETRA TECH COMPANY								Borehole ID.			BH16-01				
Engineering Log - Borehole									sneet:						
client	The started date started date started									d:	14 Jun 2016				
princ	ipal:				-		-				date	comp	leteo	a: 17 Jun 2016	
proie											logged by:			TT	
locati								۵ <i>۱</i>	1			ked by	<i>.</i>	S.IB	
positic	Incluin Incluin Checked by: Inosition: E: 302157: N: 6428339 (MGA94.) Surface elevation: 179.15 m (AHD) angle from horizontal: (,. al: 9)°			
drill m	drill model:, Truck mounted drilling fluid: casing diameter : PW										W				
drilliı	ng info ⊂	ormatio	on			material substance					, ≩ hand			structure and	_
method & support	penetratio	vater	samples & field tests	3L (m)	depth (m)	graphic log	classificatio symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components		noisture condition	consistency /	penet mete (kPa	aro- er a)	additional observations	
OLE: NON CORED GEOTWAR22658AA.GPJ < <drawingfile>> 02/08/2016 13:10 CB -</drawingfile>				-107 - -106 - -105 - -104 - -104 - - 102 - - 102 - - 101 - - 100 - - - 100 - - - - - - -				INTERBEDDED SILTSTONE AND SANDSTONE fine to medium grained, yellow and grey. (continued) INTERBEDDED COAL AND RHYOLITE black and pale grey, dull coal beds. RHYOLITE: grey. SILTSTONE: grey. INTERBEDDED CLAYSTONE AND SILTSTONE grey, some carbonaceous laminations.						л FRESH ROCK Л JT JT White (fieldspar?) vein	1
CDF_0_9_06_LIBRARY/GLB revAM Log COF BOREHC D CDF_0_9_06_LIBRARY/GLB revAM Log COF BOREHC	od auger	drilling*		-98 -97 -96 -	82.0		nil	400mm weathered zone.	cla	ssificat soil de	tion sym	 		JT JT Breakout arge JT PT consistency / relative density VS very soft	
AS HA W e.g. B T V	auger hand a washb bit sho AD/T blank I TC bit V bit	screwin auger ore wn by s bit	g* suffix	C per wat	casing netration er er lev wai	Oct-12 we el on date ter inflow	sistance ig to il ater ∋ shown	D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetrometer (kPa) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	C D c M r W v Wp r WI I	based lassifica dry noist vet blastic li iquid lir	on Unifie ation Sys	ed stem		S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

A TETRA TECH COMPANY									Borehole ID.			BH16-01			
Engineering Log - Borehole										sheet:			8 of 11		
	project										ct no.		GEOTWARA22658A		
client:		HEALTH INFRASTRUCTURE date started										started:	14 Jun 2016		
princip	oal:										date	complet	ed:	17 Jun 2016	
projec	:t:	PR	OPOSE	ED B	BUILL	DING					logge	ed by:		ΤΤ	
locatio	on:	МU	SWELL	BR	OOK	(HO	SPITA	AL.			checl	ked by:		SJB	
position	n: E:3	80215	7; N: 6428	339 (N	/IGA94)		surface elevation: 179.15 m (AHD)		angle	from he	orizontal:	90°		
drill mo	del:,	Truck	mounted			mate	vrial cub	drilling fluid:		casinę	g diame	ter : PW			
umm	5 5	mau				mate	S S	material description			sity	hand		structure and	
method & support	1 2 penetrati 3	water	samples & field tests	RL (m)	depth (m)	graphic loç	classificati symbol	SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	,	moisture condition	consistency relative den:	penetro- meter (kPa) 8 8 8 8		additional observations	
				-95				INTERBEDDED CLAYSTONE AND SILTSTO	NE Ned)				FRE	SH ROCK	-
				-94 -93 -92	- - 86.0 - -			grey, some carbonaceous laminations. <i>(contin</i> 86.1 m: 400mm rhyolite bed.	ued)				лц		
CB				-91 -90 -	88.0			Some 50mm carbonaceous beds.					JT		
					-			COAL: black, dull to shiny.							
				-87	- 92.0—			SILTSTONE: brown, some carbonaceous laminations.							
1 1 1 2 2 2				-86	-			COAL: black.							
				-85	94.0-			SILTSTONE: grey to brown, some carbonaced laminations.							
				-84	-			SILTSTONE: grey to brown, some carbonaced laminations.)us						
method AD AS HA W * e.g. B H T T V	d auger d auger s hand au washbo bit show AD/T blank bi TC bit V bit	rilling' crewir uger ore vn by :	, ng* suffix	sup M C of pen wat	port mud casing etration er er ∎ lev wai	N no restrangin refuse Oct-12 we el on date ter inflow ter outflov	nil sistance ig to ater a shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample S split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetrometer (kPa) N SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	Cla CC M M W W W	soil de based Classifica ture dry moist wet plastic li liquid lin	ion sym escriptic on Unific ation Sys	bol & n ed stem	V: S F St V: H Ft VI L M D VI	Densistency / relative density S very soft soft firm s stiff St very stiff hard o friable very loose loose D medium dense dense D very dense	

CDF_0_9_06_LIBRARY.GLB rev.AM Log_COF BOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_<<DrawingFile>> 02/08/2016 13:10

A TETRA TECH	TETRA TECH COMPANY Borehole II								BH16-01		
Engineering Log - Borehole									9 of 11		
		ect no.	GEOTWARA22658A								
client:	HEALTH	INFRAS	STRUG	CTURE			date	e started:	14 Jun 2016		
principal:	principal: project: PROPOSED BUILDING							e complet	d: 17 Jun 2016		
project:								logged by:			
location:	MUSWE	LLBROC	ок но	SPITA	L		che	cked by:	SJB		
position: E	: 302157; N: 64	28339 (MGA	.94)		surface elevation: 179.15 m (AHD)	an	gle from	horizontal:	90°		
drill model:	, Truck mounte	ed	mat	orial sub	drilling fluid:	ca	sing dian	neter : PW			
io				material description					structure and		
method & support ¹ 2 penetrat	samples field tes	sts (III) Sts	graphic lo	classificat symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	condition consistency relative der	penetro- meter (kPa) 8 8 8 8	additional observations		
		-83 - -82 - -81 - -80 - -80 - - - - - - - - - - - - -			SILTSTONE: grey to brown, some carbonaceou laminations. (continued)	JS			FRESH ROCK		
method AD auge AS auge HA hand W wash * bit sh e.g. AD/T B blank T TC bi	r drilling* r screwing* auger bore nown by suffix k bit	support M mud C casir penetral water	ig tion rang 10-Oct-12 ↓ level on da water inflow water outflow	N nil essistance ing to sal water te shown v	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal	classif so ba: Class moisture D dry M mois W wet Wp plas WI liqui	ication sy I descript ed on Un ification S t t t ic limit d limit	h mbol & ion fied ystem	consistency / relative density VS very soft S soft F F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

GEOTWARA22658AA.GPJ CORED BOREHOLE COF Log ev:AM GLB 20 g Ę

Engineering Log - Cored Borehole Borehole ID. sheet: project no.	BH16-01
Engineering Log - Cored Borehole	11 of 11
Engineering Log - Cored Borenole project no.	
	GEUTWARA22658A
date stated.	14 Jun 2016
principal: date complete	ed: 17 Jun 2016
project: PROPOSED BUILDING logged by:	TT
location: INOSWELLBROOK HOSPITAL Cnecked by:	3JB
drill model: . Truck mounted drilling fluid: casing diameter : PW	yane id.:
drilling information material substance rock mass defects	
at a b b b b b b b b b b b b b b b b b b	additional observations and defect descriptions
E j j i <th>inclination, planarity, roughness, coating, thickness, other) lar general</th>	inclination, planarity, roughness, coating, thickness, other) lar general
-67 On CCTV.	
Image:	-
	-
	-
	_
	_
	-
NO CORE: 0.25 m NO CORE: not confirmed.	
	_
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
method & support water graphic log / core recovery weathering & alteration* defect	t type planarity
AS auger screwing AD auger drilling D auger drilling Core recovered	oint CU curved shear zone UN undulating
CB claw or blade bit W washbore WW (Charles with the shown) water inflow water inflow water inflow	shear surface ST stepped contact IR Irregular
NWL Wireline core (47.6 mm) NQ wireline core (47.6 mm) HQ wireline core (47.6 mm) HQ wireline core (47.6 mm)	crushed seam seam
The winding core (03.5 mining) and 1035 Length and 1035 We page with A for alteration	nness coating
PQ wireline core (as.umm) core that RQD strength for a strength fo	nicoo coaung
SPT standard penetration test water pressure test result water pressure test result water pressure test result water pressure test result penetration test result water pressure test r	slickensided CN clean polished SN stain

ATETR	RA TECH	COMP	ANY							Boreł	nole ID.	BH16-03
E	nai	no	orin	а I	~	N _	Bo	rahala		sheet		1 of 11
	iyi			y ı	_0	y -	DU	enole		proje	ct no.	GEOTWARA22658A
clier	nt:	ΗE	ALTHI	NFR	AST	RUC	TURE			dates	started:	20 Jun 2016
prin	cipal:									date	comple	ted: 23 Jun 2016
proj	ect:	PR	OPOSE	D B	UILL	DING				logge	d by:	ТТ
loca	tion:	МL	SWELI	BR	ook	(HOS	SPITA	L		check	ked by:	SJB
posit	ion: E:	30213	89; N: 6428	329 (N	/IGA94)		surface elevation: 178.63 m (AHD)	angle	from ho	orizontal:	: 90°
drill r	nodel: ,	Truc	c mounted			i		drilling fluid:	casin	g diame	ter : PW	
dril	ing info	ormati	on			mate	rial sub	stance material description		_£	band	structure and
nethod & support	penetratio	vater	samples & field tests	3L (m)	depth (m)	graphic log	classificatio symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	consistency / elative densi	penetro meter (kPa) 8 8 8 8	additional observations
A	3 2 -	-		-		0 0 0 0	0 0	FILL: Gravelly SAND: fine to medium grained,	M	02	- 0 0 4	FILL :
				-178	-			Sandy CLAY: medium to high plasticity, orange	>Wp	St to VSt		RESIDUAL SOIL
								brown, fine to coarse grained sand.	M			
				-	2.0-							-
				-176								
- AD												-
0												
016 13				-175	10-							
7/80/2.0				-	4.0-							
				-174								
rawingt				-	-							
				-173	-							
8AA.GF					6.0-	. • 		PEBBLY SANDSTONE: medium - coarse grained, yellow brown, some subangular gravel,.				MODERATELY WEATHERED TO SLIGHTLY WEATHERED
KA2265				-		 . o						
TWAF				-172		 0						
EE C				-	-	: o : : : : : : :						_
COKE				-171	-							
Z Z Z				_	8.0-							
								Becoming grey.				SLIGHTLY WEATHERED ROCK
				-170		· · · · o						
				F		. o 						
rev:AM				-169	-	 						Washout
Y.GLB				F	10.0-	· · · · · ·						
IBKAK				-168	-	: o : : : : : : :		Becoming dark grev.				
					.							
0												PT
met	nod auger	drilling	*	sup	port		nil	samples & field tests	classificat soil de	tion sym escriptio	bol & n	consistency / relative density
AS HA	D auger drilling* M mud N nil B bulk disturbed sample S auger screwing* C casing D disturbed sample A hand auger E environmental sample								based Classific	on Unifie ation Sys	ed tem	S soft F firm
W	W Penetration E environmental sample W washbore penetration SS split spoon sample VI viron moresistance U## undisturbed sample ##mm diameter more									•		St stiff VSt very stiff
				wate	er Pr	rangin refusa	g to	HP hand penetrometer (kPa) D N standard penetration test (SPT) M	dry moist			H hard Fb friable
* e.g.	bit sho AD/T	wn by	suffix			Oct-12 wa el on date	iter shown	N* SPT - sample recovered W Nc SPT with solid cone WP VS vane shoar post/remainded (#De) WI	wet plastic l liquid lir	imit nit		VL very loose L loose
BT	blank TC bit	bit			war war	ter inflow ter outflow		R refusal HB hammer bouncing				D dense VD verv dense
V	v dit			1	1							,

ATETR	A TECH	COMP	ANY							Boreh	nole ID	BH16-03
۲r	Sai	n 0	orin	~			Da	rahala	:	sheet	:	2 of 11
	igi	ne	enn	<u>y</u> ı	<u>_0(</u>	<u>y -</u>	DUI	renoie		projec	ct no.	GEOTWARA22658AA
clien	t:	HE	ALTH I	NFR	AST	RUC	TURE	E		date s	started	20 Jun 2016
princ	ipal:									date d	comple	ted: 23 Jun 2016
proje	ect:	PR	OPOSE	ED B	BUILL	DING	i		I	logge	d by:	π
locat	ion:	мι	SWELL	LBR	ook	(HO	SPITA	NL		check	ed by:	SJB
positio	on: E::	30213	9; N: 6428	329 (N	/IGA94)		surface elevation: 178.63 m (AHD) ai	angle f	rom hc	orizontal	: 90°
drill m	nodel: ,	Truc	mounted					drilling fluid: ca	casing	diame	ter : PW	
drilli	ng info	rmati	on			mate	erial sub	stance		~		
ತೆ ಶ ಕ	stration		samples & field tests		Ē	c log	ication	SOIL TYPE: plasticity or particle characteristic.	e u	ency / densit	penetro meter	- additional observations
metho suppo	pene	water		RL (m	depth	graphi	classif	colour, secondary and minor components	conditi	consist relative	(kPa)	3
	3 5 7	-		+ -		. o		PEBBLY SANDSTONE: medium - coarse grained,		02	- 3 0 -	SLIGHTLY WEATHERED ROCK
				-166	-			yellow brown, some subangular gravel,. (conunded)				
						.°	+					
						E		SILTSTONE: grey, some large sized white clasts.				
				F	14.0-						Washout	
				-164	-	E						Slight washout
		<u></u>		Ļ	-	Ē						
		3/07/16		100		E						
		-		- 163	16.0-							
	İ			F	10.0							
				-162	-							
				Ļ	-							
				-161	-	E		Becoming pale grey.				Ε τ τι
 В					18.0-	Ē						
Ĭ				F								
				-160	-							- - - πι
				F	-							
				-159	-							
					20.0-							
						Ē						
				-158								
				F	-							
				-157	-							
				L	22.0-							
	22.1 m: 100mm white bed.											
				F								
				-155	-							
meth	thod support samples & field tests									on sym	bol &	consistency / relative density
AD AS	D auger drilling* M mud N nil B bulk disturbed sample S auger screwing* C casing D disturbed sample								soil des	n Unifie	n d	VS very soft S soft
W	A hand auger E environmental sample C / washbore SS split spoon sample C									ion Sys	ıem	F firm St stiff
					-	no res rangir	sistance ng to al	U## undisturbed sample ##mm diameter moisture HP hand penetrometer (kPa) D dry	re y pist			VST Very stiff H hard Fb friable
*	bit sho	wn by	suffix	wat	er	Oct-12 w	ater	N* SPT - sample recovered W Wet Nc SPT with solid cone Wp plate	et astic lim	nit		VL very loose L loose
e.g. B T	AD/T blank b	oit				ei on date ter inflow	= SHOWN	VS vane shear; peak/remouded (kPa) WI liqu R refusal	uid limi	t		MD medium dense D dense
V	VS vane shear; peak/remouded (kPa) WI Iiquid VDank bit TC bit R refusal V bit HB hammer bouncing VI											VD very dense

CDF_0_9_06_LIBRARY.GLB rev.AM Log COF BOREHOLE: NON CORED GEOTWARA22658AA.GPJ <<DrawingFile>> 02/08/2016 13:10

ATETRA	A TECH	COMP	ANY											Bore	hole	e ID.		BH1	6-03	
۲r	ai	no	orin	a I		A _	Ro	roh						shee	t:			3 of 11		
	iyi			y ı	-0	<u>y -</u>	DU	CI						proje	ct n	10.		GEO	TWARA22	<u>658A</u> A
client	t:	HE	ALTH	NFR	AST	RUC	TURE							date	sta	rted:		20 Ju	n 2016	
princ	ipal:													date	con	nple	ted:	23 Ju	n 2016	
proje	ct:	PR	OPOSE	ED B	BUILL	DING								logge	ed b	y:		TT		
locat	ion:	МL	ISWELL	LBR	OOK	(HO	SPITA	\L						chec	ked	by:		SJB		
positio	on: E::	30213	39; N: 6428	329 (N	/IGA94	.)		surf	ace e	levation: 178.6	3 m (AHD)		angle	e from h	orizo	ontal:	90°			
drill m	odel: , na info	I ruci	k mounted			mate	erial sub	drilli stance	ing flu	lid:			casin	ig diame	eter	: PW				
	tion					ŋ	tion			material de	escription			y / nsity	ł	nand		str	ucture and	
method & support	1 2 penetra	water	field tests	RL (m)	depth (m)	graphic lo	classifica symbol		SOIL colo	TYPE: plasticity or our, secondary an	particle characteris d minor component	stic, S	moisture condition	consistenc relative de	00 0 0 0	hetro- heter kPa)		addition	al observations	
				-				INTER		INATED CLAY E: grev, some la	STONE AND arge sized white o	lasts.					FRE	ESH ROCK	(-
				-154	-	Ē		(conti	nued,)										
				F	-															
				-153	-										li.		Wa	shout		-
					26.0-										ļį					-
				Γ	_	Ē														-
				-152																-
				F	-															
				-151	-															
				F	28.0-															
				-150	-															
D.					-										li.					-
				[-										li					-
				-149	20.0												JT			-
0				F	30.0-															
				-148	-															
				F	-															
				-147	-	E														
					32.0-	Ē		With c	somo	araval claste										-
					-			vviure	some	graver clasts.										-
				-146	_	E									li					-
р 				F											Iİ.					-
				-145	-															
				F	34.0-															-
				-144	-	Ē														-
					-	E														-
					-	E		Becor	ning	grey.							JT			
																			-	
meth AD	hod support samples & field tests auger drilling* M mud N nil B bulk disturbed sample											classifica soil d	tion sym lescriptic	nbol on	&	c V	consistency	/ relative density very soft	'	
AS HA	As auger screwing* C casing D disturbed sample 1A hand auger Benetration E environmental sample										based Classific	on Unifie	ed stem		F	6 -	soft firm			
	W washbore SS split spoon sample									r m	noisture					oτ /St ⊣	stiff very stiff bard			
	hit cho	wn h	cuffix	wat	er	refusa	al		1≓ √*	standard penet SPT - sample re	ration test (SPT)		/ moist / wet					- -b /L	friable very loose	
e.g. B	AD/T blank h	oit	SUIIIA	-		el on date	ater e shown	N V	√c ∕S	SPT with solid over the solid of the shear; peak over the shear; peak ov	cone ak/remouded (kPa)	N N	/p plastic /l liquid li	limit mit			L	MD	loose medium dense	
T V	blank bit TC bit V S vane shear; peak/remouded (kPa) WI R refusal HB hammer bouncing														V) /D	dense very dense			

CDF_0_9_06_LIBRARY.GLB rev.AM Log COF BOREHOLE: NON CORED GEOTWARA22658AA.GPJ <<DrawingFile>> 02/08/2016 13:10

AT	ETRA TEC	HCOM	PANY							Bore	hole ID.	BH16-03
	Ina	inc	orin	~ I	~	N	Po	rahala		shee	t:	4 of 11
	ing	me	enn	y ı	-0(<u>J</u> -	DU			proje	ect no.	GEOTWARA22658A
С	lient:	HE	EALTH I	NFR	AST	RUC	TURI	E		date	started:	20 Jun 2016
р	rincipal:									date	complet	ed: 23 Jun 2016
р	roject:	PF	ROPOSE	D B	UILE	DING				logg	ed by:	ТТ
lo	cation:	М	JSWELI	_BR	ООК	HOS	SPITA	AL		chec	ked by:	SJB
p	osition: E	: 3021	39; N: 6428	329 (N	/IGA94)		surface elevation: 178.63 m (AHD)	angl	e from h	orizontal:	90°
d	rill model: drilling in	format	tion			mate	rial sub	drilling fluid: bstance	casi	ng diam	eter : PW	
	tio		samples 8			Ð	tion	material description		y / nsity	hand	structure and
method &	support penetra	water	field tests	RL (m)	depth (m)	graphic lc	classifica symbol	SOIL TYPE : plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistenc relative de	(kPa)	additional observations
DF_0_9_06_LIBRARY.GLB rev:AM_Log_COFBOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_ <drawingfile>> 02/08/2016 13:10 CB</drawingfile>				-142 -141 -140 -139 -138 -137 -138 -137 -136 - -135 - -135 - -134 - -133 -				COAL: black, dull. INTERBEDDED SILTSTONE AND SANDSTONE fine medium grained, grey, some large sized white clasts.				FRESH ROCK Breakout Breakout Breakout
r // // //	method supp AD auger drilling* AS auger screwing* HA hand auger W washbore * bit shown by suffix e.g. AD/T B blank bit T T C bit V Vbit					N no res rangin refusa Oct-12 wa el on date er inflow	nil stance g to ter shown	samples & field tests of B bulk disturbed sample bulk disturbed sample D disturbed sample bulk disturbed sample S split spoon sample bulk disturbed sample U## undisturbed sample ##mm diameter bulk disturbed sample ##mm diameter HP hand penetrometer (kPa) bulk disturbed sample for the standard penetrometer (kPa) bulk disturbed sample ##mm diameter N standard penetrometer (kPa) bulk disturbed sample ##mm diameter bulk disturbed sample ##mm diameter N standard penetrometer (kPa) bulk disturbed sample ##mm diameter bulk disturbed sample ##mm diameter N Standard penetrometer (kPa) bulk disturbed sample ##mm diameter bulk disturbed bulk disturbed sample ##mm diameter N SPT - sample recovered W W Nc SPT with solid cone WP VS vane shear; peak/remouded (kPa) WI	classific soil d base Classifi isture dry moist wet plastic liquid l	ation syn descriptid d on Unifi cation Sy	hbol & on ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

TETRA TEC	CH COMP	ANY									l	Boreh	nole ID.	B	H16-03	
Ena	ino	orin	~ I	~	~	Po	roho				:	sheet	:	5 of	11	
LIIY	ine	enn	y ı	-0(y -	DU	leno					projec	ct no.	GE	EOTWARA226	<u>58A</u>
client:	HE	ALTH II	NFR	AST	RUC	TURE	Ξ					date s	started:	20	Jun 2016	
principal	:											date o	complete	ed: 23	Jun 2016	
project:	PR	OPOSE	ED B	UILL	DING						I	logge	d by:	TT	-	
location:	мυ	SWELL	BR	ook	кно	SPITA	AL.					check	ed by:	SJ	IB	
position: I	E: 30213	9; N: 6428	329 (N	/GA94)		surface e	elevation: 178.6	3 m (AHD)	а	ngle f	rom hc	prizontal:	90°		
drill model	l:, Trucł	mounted	,		,		drilling fl	uid:	, , , , , , , , , , , , , , , , , , ,	C	asing	diame	ter : PW			
drilling in	nformati	on		1	mate	erial sub	stance									
& ration		samples &		Ê	log	cation		material de	escription	Ű	, c	ncy / density	hand penetro-	ade	structure and ditional observations	
method support	water	field tests	RL (m)	depth (r	graphic	classific symbol	col	our, secondary an	r particle characteristic d minor components	moistur	conditio	consiste relative o	meter (kPa) 8 8 8 8			
			-				INTERBEI	DED SILTSTO	NE AND SANDSTO	NE /bite				FRESH R	оск	
			-130	-			clasts. (co.	ntinued)								
				-		,										-
				_												-
			-129													-
			-	50.0-												-
			-128	-										JT		-
				-												-
																-
			-127	-												-
			-	52.0-												-
	il I		126	-												-
	i		-120	_												
			-													-
			-125	-												
			_	54.0-										Small bre	akout	-
				-												-
			-124													-
			-	-										Breakout JT		
			-123	-												
				56.0-												
	il I															-
			-122													-
			-	-			INTERLAN SILTSTON	INATED CLAY	STONE AND some fine to mediun	n						
			-121	-			sized clast	s.						JT		-
	i			58.0-												-
																-
			-120	-												
	i		-	-												-
	i		-119	-												
														ļ		-
method AD aug	er drilling		sup M r	port mud	N	nil	sampl B	es & field tests bulk disturbed s	sample	class s	ificatio	on syml	bol & n	consist VS	ency / relative density very soft	
AS aug HA han	er screwin d auger	ng*	Cc	casing			D E	disturbed samp environmental	le sample	ba Clas	ased or ssificati	n Unifie ion Sys	d tem	S F	soft firm	
W was	hbore		pen F		∙ ¶- nores	istance	SS U##	split spoon sam undisturbed sam	nple mple ##mm diameter	moistur	e			St VSt	stiff very stiff	
				 Pr	rangin refusa	ig to	HP N	hand penetrom standard penet	eter (kPa) ration test (SPT)	D dry M mo	ist			H Fb	hard friable	
* bit s e.g. AD/	shown by T	suffix			Oct-12 wa el on date	ater shown	N* Nc	SPT - sample r SPT with solid	ecovered cone	W we Wp pla	t stic lim ud limi	nit †			very loose loose	
B blar T TC	nk bit bit			wat	ter inflow	v	VS R	vane shear; pe refusal	ак/remouded (kPa)	vvi iidi				D	medium dense dense	
V V bi	t			™ ^{wai}		•	HB	hammer bounc	ing						very dense	

ATETR	A TECH	COMP	ANY										Bore	hole ID.		BH1	6-03	
۲	ai	no	orin	~ I		~	Po	roho					shee	t:		6 of 11		
	igi	ne	enn	<u>y</u> ı	-0(<u>y -</u>	DU	reno	le				proje	ct no.		GEOT	WARA22	<u>658A</u> A
clien	t:	HE	ALTHI	NFR	AST	RUC	TUR	Ξ					date	started:		20 Ju	n 2016	
princ	ipal:												date	complete	ed:	23 Ju	n 2016	
proje	ect:	PR	OPOSE	ED B	UILL	DING							logge	ed by:		TT		
locat	ion:	мυ	ISWELL	BR	ook	(HOS	SPITA	AL.					chec	ked by:		SJB		
positio	on: E::	30213	39; N: 6428	329 (N	/IGA94)		surface	elevation: 17	8.63 m (AHD)		angle	e from h	orizontal:	90°			
drill m	odel: ,	Truck	k mounted			-		drilling f	iluid:			casin	g diame	eter : PW				
drilli	ng info	rmati	ion			mate	erial sub	stance						1				
ort &	netration	er	samples & field tests	Ê	(m) h	hic log	sification bol	soi	materia L TYPE: plastici	al description ty or particle characte	eristic,	sture	istency / ve densit	hand penetro- meter		stru addition	ucture and al observations	
meti supp	3 De	wate		RL (dept	grap	clas sym		Jour, secondary	and minor compone	51115	mois conc	cons relati	(KPa) 6 3 5 5 4 9 3 5 7 6				
				-				INTERLA SILTSTO	MINATED CL NE: grey brow	AYSTONE AND m, some fine to me	edium				FRES	SH ROCK		-
				-118	-			sized clas	sts. <i>(continued</i> e to medium s	/) ized subangular g	ravel							
				-	-			clasts.										
				-117	-													
					62.0-													
																		-
				-116	-													-
	İ			-	-													
				-115	-													-
					64.0-													_
																		-
				-114		Ī		COAL: bla				_						-
				-	-			Becoming	g shiny.									
				-113	-			INTERBE	DDED SILTS		STONE	_						-
CB					66.0-			fine medi	um grained, y	ellow grey.								-
				-112														
				-	-													
				-111	-													
					68.0-			Becoming	arev									-
					-			Docoming	j gio <u>j</u> .									-
				-110														-
				-														-
				-109	-													-
				-	70.0-													
				108	-													-
				100														
				F														-
				-107	-													
meth	od		<u> </u>	sup	port	<u>مد م</u>		samp	oles & field test	s		classifica	tion syn	nbol &	co	nsistency	/ relative density	
AD AS	auger auger	drilling screwir	* ng*	M C d	mud casing	N	nil	B D	bulk disturb disturbed sa	ed sample ample		based	escription on Unifi	on ed	VS S		very soft soft	
W	nand a washb	ore		pen	etration	n		E SS	environmen split spoon	tal sample sample		Classific	ation Sy	stem	F St		firm stiff	
						 no res rangin refusa 	sistance ng to al	U## HP	undisturbed hand penet	i sample ##mm diam rometer (kPa)	ieter n	oisture dry			VS H ⊑⊾	T	very stiff hard friable	
*	bit sho	wn by	suffix	wat	er ▼_ . ¹⁰⁻	Oct-12 wa	ater	N* Nc	SPT - samp	le recovered	V V	V wet	limit		VL		very loose	
e.g. B T	AD/T blank b	bit				ei on date ter inflow	e snown	VS R	vane shear; refusal	peak/remouded (kP	a) V	VI liquid li	mit)	medium dense dense	
V	V bit			-	- Vat	ter outflow	v	НВ	hammer bo	uncing					VD)	very dense	

02/08/2016 13:10 2 ç Ľ, 000 ú ЦС DO I MA VA LIBRARY.GLB CDF 0 9 06

A TETRA	TECH CO	OMPA	NY							Bore	hole ID		BH16-03	
En	air		orin	~ I		N _	Bo	robolo		shee	t:		7 of 11	
	yıı	le	enn	y ı	-0(<u>J -</u>	DU	lenole		proje	ct no.		GEOTWARA2265	5 <u>8A</u> A
client:		ΗE	ALTH II	NFR	AST	RUC	TURE	E		date	started	:	20 Jun 2016	
princi	pal:									date	comple	eted:	23 Jun 2016	
projec	ct: I	PR	OPOSE	DE	BUILL	DING				logge	ed by:		TT	
locatio	on: I	ИU	SWELL	.BR	ook	(HOS	SPITA	4 <i>L</i>		chec	ked by:		SJB	
positio	n: E:30	213	9; N: 6428	329 (N	/IGA94)		surface elevation: 178.63 m (AHD)	angle	e from h	orizontal	: 90°		
drill mo	odel:, T	ruck	mounted				wiel euch	drilling fluid:	casir	ng diame	eter : PW	/		
Grinni	5	natio				mate	E E	material description		/ sity	hand		structure and	
method & support	2 penetrati	water	samples & field tests	RL (m)	depth (m)	graphic loç	classificati symbol	SOIL TYPE : plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency relative den	penetro meter (kPa) 8 8 8 8	96 D-	additional observations	
				-				INTERBEDDED SILTSTONE AND SANDSTONE				FR	ESH ROCK	-
				-106	-									
				L	-									-
				105	-									-
				-105	74.0									-
				F	74.0									
				-104	-							i		
				Ļ	-				_					-
				102	-			INTERBEDDED COAL AND RHYOLITE black and pale grey, dull coal beds.						-
				-103	76.0-	0+0+0+0 +0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+		RHYOLITE: pale grey.	_					-
				F		0+0+0+0+0 +0+0+0+0+0 +0+0+0+0+0								-
				-102	-	0+0+0+0+0 +0+0+0+0 0+0+0+0+0 +0+0+0+0+0						i		-
5				Ļ	-	0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+						JT		-
				-101	-	0+0+0+0+0 +0+0+0+0+0 0+0+0+0+0 +0+0+0+0								-
9 8 8					78.0-	0+0+0+0+0 0+0+0+0+0 0+0+0+0+0			_					-
				F	10.0	· ·		SILTSTONE: grey.						
				-100	-									
				Ļ	-									
				-00	-				_					-
					80.0-			grey, some carbonaceous laminations.						-
				-										-
				-98	-									-
				F	-							TL		
				-97	-							i		-
					82.0-									
				F										
				-96	-									-
				F	-									-
				-95	-							La	rge 200mm breakout	-
metho AD	d auger dri	lling*		sup M	port mud	N	nil	samples & field tests B bulk disturbed sample	classifica soil c	ation sym lescriptic	ibol &		consistency / relative density VS very soft	
AS HA	AS auger screwing* C casing D disturbed sample HA hand auger E environmental sample									t on Unifie cation Sys	ed stem		S soft F firm	
vv	W washbore penetration SS split spoon sample U## undisturbed sample ##mm diameter m												St stiff VSt very stiff	
1				wat	<u>اسات</u> er	rangin refusa	ig to I	HP hand penetrometer (kPa) N standard penetration test (SPT)	D dry M moist				H hard Fb friable	
* e.g.	bit showr AD/T	n by s	suffix	-	∎_ 10- lev	Oct-12 wa el on date	ater shown	N° SPI - sample recovered Nc SPT with solid cone	Wp plastic Wp liquid li	limit mit			v∟ very loose L loose	
B T	blank bit TC bit				wat	er inflow er outflow	v	R refusal HB hammer bouncing		-			D dense	
V	V bit			1	-								. Vory delise	

CDF_0_9_06_LIBRARY.GLB rev:AM Log COF BOREHOLE: NON CORED GEOTWARA22658AA.GPJ <<DrawingFile>> 02/08/2016 13:10

Engineering Log - Borehole sheet: Fel 11 cloret HEALTH INFRATRUCTURE GEOTMARA2228504 project molecular Calue Standet 23 Jun 2018 project molecular Calue Standet 23 Jun 2018 project molecular Galor Market Standet S.J.B	ATETR	A TECH	COMF	ANY						Bore	ehole	e ID.	BH16-03	
Ling intermined project no. CECTWARA225824/ data standard: 20 Jum 2016 opinopal: data standard: 20 Jum 2016 project: PROPOSED BUILDING logged by: T location: MUSWELLBROOK HOSPITAL longed by: T location: MUSWELLBROOK HOSPITAL case gaineer: PN difficience: model according SJB project: Truck Hospital autoo allocation: 77.85.7m (AHD) model from hospital difficience: model according SJB model according SJB difficience: model according SJB model according SJB difficience: difficience: model according SJB model according difficience: difficience: SJB model according SJB difficience: difficience: SJB <th>Er</th> <th>nai</th> <th>no</th> <th>orin</th> <th>а I</th> <th></th> <th>a -</th> <th>Bor</th> <th>rahala</th> <th>shee</th> <th>et:</th> <th></th> <th>8 of 11</th> <th></th>	Er	nai	no	orin	а I		a -	Bor	rahala	shee	et:		8 of 11	
client: HEALTH INFRASTRUCTURE date scandel: 20 Jun 2016 principal: class complete: 23 Jun 2016 principal: logged hy: TT principal: class complete: SJB principal: material decription class complete: SJB state complete: zig gig gig for complete: SJB state complete: zig gig gig for complete: SJB state complete: zig gig gig for complete: SJB state complete: zig gig gig for complete:<		iyi			y ı	_0	<u>y -</u>	DUI		proje	ect n	0.	GEOTWARA22658	
pincepite de competence 23 June 244 project PROPOSED BUILDING Coartier MUSWELLERCOK HOSPITAL de control de c	clien	t:	ΗE	ALTHI	NFR	AST	RUC	TURE		date	star	ted:	20 Jun 2016	
Project PROPOSED BUILDING Logged by: TT location: MUSWELLBROOK HOSPTAL checked by: SJB protein: Status aufare devalue: TREPARCING casing damser : FW diffing fund: casing damser : FW casing damser : FW casing damser : FW diffing fund: casing damser : FW casing damser : FW casing damser : FW diffing fund: casing damser : FW casing damser : FW casing damser : FW diffing fund: casing damser : FW casing damser : FW casing damser : FW diffing fund: casing damser : FW casing damser : FW casing damser : FW diffing fund: casing damser : FW fmm or casing damser : FW casing damser : FW diffing fund: casing damser : FW fmm or casing damser : FW casing damser : FW diffing fund: fmm or casing damser : FW fmm or casing damser : FW casing damser : FW diffing fund: fmm or casing damser : FW fmm or casing damser : FW fmm or casing damser : FW diffing fund: fmm or casing damser : FW fmm or casing damser : FW fmm or c	princ	ipal:								date	con	nplete	ed: 23 Jun 2016	
Incade: Unstructure: SLB politic: Exaction: andraw devalors: TSS 31 (AHD) angle from hotezonai: or and mode: Transmitter andraw devalors: TSS 31 (AHD) angle from hotezonai: or and mode: Transmitter material advances material advances material advances and mode: Transmitter material advances material advances material advances and mode: Transmitter material advances material advances material advances and material advances material advances material advances material advances material advances and material advances material advances material advances material advances material advances and material advances material advances material advances material advances material advances material advances and material advances material advances material advances material advances material advances material advances and material advances material advances material advances material advances	proje	ect:	PR	OPOSE	ED B	BUILI	DING			logg	ed b	y:	ΤΤ	
Opsibility: Earlies electron: and/a loss electron: angle for matcore Immoder:	locat	ion:	МL	ISWELI	LBR	OOK	K HOS	SPITA	NL	cheo	cked	by:	SJB	
difficult case of unrease : PV etiling information meterial substance etiling information etiling information etiling information etiling information etiling information et	positio	on: E::	30213	39; N: 6428	329 (N	/IGA94)		surface elevation: 178.63 m (AHD) and	le from l	norizo	ontal:	90°	
Statute Statute <t< td=""><td>drill m drilli</td><td>nodel: ,</td><td>Truc rmat</td><td>k mounted</td><td></td><td></td><td>mate</td><td>erial subs</td><td>drilling fluid: cas</td><td>ing diam</td><td>eter :</td><td>PW</td><td></td><td></td></t<>	drill m drilli	nodel: ,	Truc rmat	k mounted			mate	erial subs	drilling fluid: cas	ing diam	eter :	PW		
Solar Picture Solar Pi		u						ion	material description	∕ / nsity	h	and	structure and	
Bit of the se	method & support	1 2 penetrat	water	field tests	RL (m)	depth (m)	graphic lo	classificat symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	consistency relative der	(I (I (I (I	netro- neter kPa)	additional observations	
And Another Structure Another Structure Another Structure Another Structure Another Structure Another Structure Another Structure Another Structure Another Structure Another Structure					-				INTERBEDDED CLAYSTONE AND SILTSTONE		T		FRESH ROCK	-
model -03 BB 0 -03 BB 0 -04 -01 -05 -00 -06 -00 -07 BB 0 -08 -00 -09 00.0 -00 -00 -03 -00 -04 -01 -04 -01					-94	-								-
1 -93 86.0- -92 -93 86.0- -92 -93 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>Ē</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>					-		Ē							-
Terminal of the second of t					02	-								
1 -92 -91 68.0 -91 68.0 -91 68.0 1 -90 -90 -91 -91 -90 -91 -91 -90 -90 -91 -91 -91 -90 -91 -91 -91 -90 -91 -91 -91 -90 -91 -91 -91 -90 -91 -91 -90 -91 -91 -91 -91 -91 -90 -91 -91 -91 -91 -91 -92 -91 -91 -91 -92 -91 -91 -91 -92 -91 -91 -91 -92 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -91 -					-93	86.0-								-
method situations the shown by suffix bit shown by suf					F	00.0								
8 -91 88.0 -91 88.0 -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 -91 -90 -92 -91 -93 -91 -94 -90 -95 -91 -96 -91 -97 -92.0 -97 -92.0 -98 -92.0 -98 -92.0 -98 -92.0 -98 -92.0 -98 -92.0 -98 -92.0 -98 -92.0 -93 -92.0 -93 -92.0 -93 -93 -93 -93 -93 -93 -94.0 -93 -93 -93 -94.0 -93 -94.0 -93 -95 -94.0 -95 -94.0 -95 -94.0 -95 -94.0					-92									-
8 -91 88.0 -00 -91 88.0 -00 -90 -91 -00 -91 88.0 -00 -91 -91 -00 -91 -91 -00 -91 -91 -00 -91 -91 -00 -91 -91 -00 -91 -91 -00 -91 -91 -00 -91 -91 -00 -91 -91 -01 -91 -91 -02 -91 -91 -03 -91 -91 -04 -91 -91 -05 -91 -91 -05 -91 -91 -04 -91 -91 -05 -91 -91 -04 -91 -91 -04 -91 -91 -04 -91 -91 -04 -91 -91 -04 -91 -91 -040 -91 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-</td></t<>					-	-					1			-
8 -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0- 9 90.0- -90 90.0- -90 90.0-					-91						1			-
8 -99 90.0 9 90.0						88.0-								_
8 900 900 900 900 80 900 900 900 900 80 900 900 900 900 80 900 900 900 900 91 910 900 900 900 920 900 900 900 900 91 910 900 900 900 920 900 900 900 900 910 900 900 900 900 900 910 900 900 900 900 900 910 900 900 900 900 900 910 900 900 900 900 900 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910					[-
83 -83 90.0 -83 90.0 -10	5				-90									
8 1 -89 90.0 - <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļį</td> <td></td> <td></td> <td></td>					F						ļį			
8 90.0 <t< td=""><td></td><td></td><td></td><td></td><td>-89</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>					-89									-
method suger screwing* support support SILTSTONE: brown, some carbonaceous laminations. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	E B C B					90.0-								-
method I -86 -67 92.0 1111 11														-
method 1 -67 92.0 -57 SILTSTONE: brown, some carbonaceous 11111 1 -68 -66 -67 92.0 -67 92.0 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68 <td< td=""><td></td><td></td><td></td><td></td><td>-88</td><td></td><td>Ī</td><td>+</td><td>COAL: black, dull to bright.</td><td></td><td></td><td></td><td></td><td>-</td></td<>					-88		Ī	+	COAL : black, dull to bright.					-
method AD auger chilling* AS support B support B support B support B support B support B bulk disturbed sample B consistency / relative density VS VS very soft VS very soft VS ** bit shown by suffix B ** field tests B bulk disturbed sample B consistency / relative density VS VS very soft VS					-						ļį			-
method 32.0 SILTSTONE: brown, some carbonaceous aminations. -66 -66 -66 -86 -94.0 -66 -66 -85 -94.0 -66 -66 -86 -86 -66 -66 -86 -94.0 -66 -66 -86 -94.0 -66 -66 -86 -94.0 -66 -66 -88 -66 -66 -66 -84 -66 -66 -66 -83 -66 -66 -66 -84 -66 -66 -66 -84 -66 -66 -66 -84 -66 -66 -66 -84 -66 -66 -66 -84 -66 -66 -66 -84 -66 -66 -66 -94.0 -66 -66 -66 -94.0 -66 -66 -66 -94.0 -66 -66 -66 -94.0 -66 -66 -66 </td <td></td> <td></td> <td></td> <td></td> <td>-87</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-87									
method AD auger drilling* AS auger screwing* HA hand auger W washbore support B bit shown by suffix e.g. ADT support M model M M samples bit shown by suffix e.g. ADT support M M samples bit shown by suffix e.g. ADT support M M samples bit shown by suffix e.g. ADT support M M samples bit shown by suffix e.g. ADT samples methad M M samples methad M consistency / relative density VS VS very soft S * bit shown by suffix e.g. ADT samples M M samples methad M bit shown by suffix VS SPT - smple recovered VS consistency / relative density VS VS very soft S Soft description based on Unified Classification symbol & VS very soft S S * bit shown by suffix e.g. ADT method water inflow N nil Consistency / relative density VS VS very soft S S * bit shown by suffix e.g. ADT N nil Consistency / relative density VS VS very soft S S * bit shown by suffix B F firm M M M M * bit shown by suffix B F firable S VS very loose D L loose D L loose D L loose D L loose D L loose D L					-	92.0-	╎┛┛┛	+	SILTSTONE: brown, some carbonaceous					_
method AD support SILTSTONE: brown. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					-86		· ·		laminations.					-
method AD auger drilling* AD auger drilling* support Ras auger drilling* AS auger drilling* Mi mud N nil C cassification symbol & soil description bit shown by suffix e.g. AD/T B bliank bit T T Tc bit Wetter I 0-Cc-12 water I water inflow VS VS very stift HP hand penetration test (SPT) N''''''''''''''''''''''''''''''''''''								+	COAL: black.					-
method support SILTSTONE: brown. -84 -84 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -83 -94 -95 -96 -97 -98 -98 -90	5 5 1				F						1			-
method support support samples & field tests consistency / relative density Method auger drilling* auger screwing* support samples & field tests soil description AD auger drilling* Cassification symbol & soil description soil description vs very soit HA hand auger penetration penetration bit shown by suffix soil description soil description * bit shown by suffix e.g. AD/T no resistance regristion VS very soft B blank bit T T Cost VS very soft R refutual N* SPT - stample recovered W W Weter VL very soft W VS very soft R refutual N Sit stiff N Sit stiff W water VI-O-C1-12 water VS very soft N Sit solid clinit ND ND ND N ster outflow R refutual R refutual ND ND ND ND N very denes														-
method -84					+	94.0-		+	SILTSTONE: brown.					-
method support samples & field tests soil description AD auger drilling* M N Nil AS auger screwing* M Mud N HA hand auger penetration D disturbed sample soil description Soil description Presentation penetration penetration S split spon sample St stiff * bit shown by suffix e.g. AD/T N standard penetration test (SPT) N* SPT - sample recovered N St stiff B blank bit T T TC bit T TC bit N store fullow R refusal R refusal R N store fullow ND medium densee V V water outflow HB harmer bouncing ND VD very dense					-84		· _							
method -83							· _							-
method AD support auger drilling* AS support M samples & field tests B bulk disturbed sample D classification symbol & soil description based on Unified Classification System consistency / relative density VS vs vs very soft S soft S soft S consistency / relative density VS vs very soft S soft S soft description D vs vs very soft S very					[·							-
method AD auger drilling* AS support M mud samples & field tests classification symbol & soil description consistency / relative density VS very soft AS auger screwing* A hand auger mud N nil D disturbed sample soil description VS very soft S soft F firm S soft S soft S soft S soft S soft S soft S S soft S S soft S S soft S <td></td> <td></td> <td></td> <td></td> <td>-83</td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-83		· ·							
AS auger screwing* Initial It initial It initial It initial It initial It initial It initial It initial Volume	meth AD	od auger	drilling	*	sup	port	- N	nil	samples & field tests classifi B bulk disturbed sample Soi	cation syı descripti	nbol 8 ion	<u> </u>	consistency / relative density	1
W washbore penetration SS split spoon sample * bit shown by suffix •	AS HA	auger : hand a	screwi uger	ng*	C	casing	IN	1111	D disturbed sample bas E environmental sample Classi	ed on Unif	ied /stem		S soft F firm	
 bit shown by suffix e.g. AD/T B blank bit T TC bit Water outflow HP hand penetrometer (kPa) N* SPT - sample recovered VS vane shear; peak/remouded (kPa) R refusal R hand R moist D dry H hand H hand M moist VS vane shear; peak/remouded (kPa) R refusal B hand HP hand penetrometer (kPa) N standard penetration test (SPT) M moist V wet V wet V wet V lot VS vane shear; peak/remouded (kPa) R refusal D dense VD very dense 	W	washb	ore		pen	etration	n T⊢nores	istance	SS split spoon sample U## undisturbed sample ##mm diameter moisture				St stiff VSt very stiff	
* bit shown by suffix it						<u></u>	rangin refusa	ig to	HP hand penetrometer (kPa) D dry N standard penetration test (SPT) M mois				H hard Fb friable	
B blank bit vs vane snear; peak/remouded (kPa) vit MD medium dense T TC bit R refusal B hammer bouncing D dense V Vitig HB hammer bouncing VD very dense	* e.g.	bit sho AD/T	wn by	suffix			-Oct-12 wa el on date	ater shown	N* SPT - sample recovered W wet Nc SPT with solid cone Wp plast With institution	c limit limit			VL very loose L loose	
	B T	blank b TC bit	oit			wa wa	ter inflow ter outflow	v	R refusal HB harmer bouncing				D dense	

CDF_0_9_06_LIBRARY.GLB rev:AM Log_COF BOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_<CDrawingFile>> 02/08/2016 13:10

ATETR	A TECH	COMF	ANY								Borel	nole ID.	BH16-03
с.	adi	no	orin	a		2	Po	rahala			sheet	:	9 of 11
	igi	ne	enn	<u>y</u>	LU	y -	DU	renoie			proje	ct no.	GEOTWARA22658AA
clier	nt:	HE	ALTHI	NFF	RAST	RUC	TURE	Ξ			date	started:	20 Jun 2016
prine	cipal:										date	complete	ed: 23 Jun 2016
proje	ect:	PR	OPOSE	ED E	BUILI	DING	i				logge	d by:	π
loca	tion:	МL	ISWELI	LBR	00k	(HO	SPITA	AL.			checl	ked by:	SJB
posit	ion: E:	30213	39; N: 6428	329 (I	MGA94	.)		surface elevation: 178.63 m (AHD)		angle	from ho	orizontal:	90°
drill n	nodel: ,	Truc	k mounted			mate	erial sub	drilling fluid:		casin	g diame	ter : PW	
	j. Joj						Ŀ	material description			' / isity	hand	structure and
method & support	penetrat	vater	samples & field tests	3L (m)	depth (m)	graphic lo	classificat symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components		moisture	consistency elative den	penetro- meter (kPa) 8 8 8 8	additional observations
—	0 0 7			-				SILTSTONE: brown. (continued)		2.0	01	-0.04	FRESH ROCK
				-82 -81 -80 -79 -78 -78 -77	98.0-			COAL: black, dull, with bright bands.					
				- 776 - 775 - 774 - 773 - 772 - 771	102.0			COAL: black, dull, with bright bands.					
meti AD AS HA W * e.g. B T V	method AD support auger drilling* AS support model samples & field tests B bulk disturbed sample D disturbed sample B W washbore penetration S split spoon sample refusal D disturbed sample B disturbed sample B disturbed sample B disturbed sample B disturbed sample B disturbed sample B disturbed sa								Cla D C M M W W WP I WI I	ssificat soil de based Classifica ture dry moist wet plastic li liquid lin	ion sym escriptio on Unifie ation Sys mit mit	bol & n tem	consistency / relative densityVSvery softSsoftFfirmStstiffVStvery stiffHhardFbfriableVLvery looseLlooseMDmedium denseDdenseVDvery dense

CDF_0_9_06_LIBRARY.GLB rev:AM_Log_COF BOREHOLE: NON CORED_GEOTWARA22658AA.GPJ_<CDrawingFile>> 02/08/2016 13:10

Biging Control Log - Borchole and the state of the	A TETRA	A TECH	COMP	ANY										Borel	nole ID.		BH16-03	
Cardinal control Project no. COUNTRAZZEGENAL oloni: HEALTH INFRASTRUCTURE date stanted: 20 Jun 2016 project: PROPOSED BULLDING longent date stanted: 20 Jun 2016 project: PROPOSED BULLDING longent date stanted: 20 Jun 2016 project: PROPOSED BULLDING longent date stanted: 20 Jun 2016 project: PROPOSED BULLDING longent date stanted: 20 Jun 2016 project: Project: stantes stantes 20 Jun 2016 date: model absolution stantes stantes 20 Jun 2016 date: stantes stantes stantes stantes 20 Jun 2016 date: model absolution: stantes stantes stantes stantes date: stantes stantes	Бr	ai	no	orin	~		2	Po	roho					sheet	t:		10 of 11	
elent: MEALTH INFRASTRUCTURE date started: 2.30 Jun 2016 principal: PROPOSED BUILDING togeta P20 PROPOSED BUILDING starter EXCIDENT NEARED NOT NOT THE STARTER (VID) and the comment of the starter o		igi	ne	enn	<u>y</u> I	LO	<u>y -</u>	DU	renc					proje	ct no.		GEOTWARA2	2658AA
pincpal: det completé 2 Jun 2016 projet: PRO-SEB BUILDING Location: MUSUELLERCOK HOSPITAL checked by: SJB position: E: 202199, K422022 (MGRA4) and the detendion: TE.B.G in (AHD) and performance in the detendion of the detend	client	t:	ΗE	ALTHI	NFF	RAST	RU	CTUR	Ξ					date	started:		20 Jun 2016	
Proper PROPOSED BUILDING logged by: TT Totals: MUSPELLBROK HOSPIAL c.backad by: S.J. Statistication of the statis	princi	ipal:												date	complete	ed:	23 Jun 2016	
Inclum: MUSHILLBROOK HOSPITAL check by SdB pallion: Ex20330; NL 6423223 (MGA24) auflace deviation: 178 B3 m (AHD) augla from hotochall: B0 mimode, Truth consolid consolid minode in the consolid consolid minode in the consolid timode, Truth consolid consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolid minode in the consolidie	proje	ct:	PR	OPOSE	ED E	BUILL	DINC	3						logge	ed by:		ΤΤ	
position: E: 302130, N: 6423232 (MGA24) surface elevation: 178.63 m (AHD) engle from hotizontal: 80° carrier data data data data data data data dat	locati	ion:	мu	SWELL	LBR	OOK	кнс	SPIT	4L					checl	ked by:		SJB	
enting function: transmip transmip transmip transmip entified advances entifi	positic	on: E:	30213	89; N: 6428	329 (1	MGA94)		surface	elevation: 178.6	i3 m (AHD)		angle	from he	orizontal:	90°		
drilling material description material description<	drill m	odel: ,	Truck	k mounted			-		drilling	fluid:			casin	g diame	eter : PW			
Solution Sector Solution S	drilli	ng info	ormati	on	1		ma	terial sub	ostance	motorial d	accription			Þ	bond		otructure and	
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	od &	etratio		samples & field tests		Ê	ic log	ficatio	so	IL TYPE: plasticity o	r particle characteristic	,	ure tion	tency /	penetro- meter		additional observation	is
method All and schengt All All and schengt All All and schengt All All All All All All All All All Al	methc suppc	2 pen	water		RL (m	depth	graph	classi symbi	с	olour, secondary an	d minor components		moisti condit	consis	(kPa)			
method No					F				COAL: bl	lack, dull, with brig	ght bands. (continue	ed)						
1 -9 -0 </td <td></td> <td></td> <td></td> <td></td> <td>-70</td> <td>-</td> <td>┤┫┫╽</td> <td></td>					-70	-	┤┫┫╽											
8 Figure 1 Figure					L	-												
method bit i bit i						-												-
method h mod h					-69	110.0-												-
model -68 -1 NO CORE: 2.30m (110.80-113.10 m) VOID. IIII -67 -66 -67 -66 -67 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -66 -110.0 -66 -66 -66 -66 -110.0 -66 -66 -66 -66 -110.0 -67 -66 -66 -66 -110.0 -67 -66 -66 -66 -110.0 -76 -76 -76 -76 -110.0 -76 -76 -76 -76 -110.0					F	10.0												-
methode Mode serving Mode					-68	-												
B 47 12.0- -66 -66 -66 -66 14.0- -63 -66 -66 -66 -66 14.0- -64 -66 -66 -66 14.0- -63 -66 -66 -66 14.0- -64 -66 -66 -66 16.0- -67 -66 -66 -66 16.0- -68 -66 -66 -66 16.0- -69					F	-	A	Λ	NO COR	E: 2.30m (110.80	-113.10 m) VOID .							
8 12.0 6 0					-67	-	$\left \right\rangle /$	′										-
methods asupport SiLTSTONE: grey. 1111 66						112.0-	ΙX											-
method bill support bill su	2				F		$] \land$											
B Image diling not support washbore SiLTSTONE grey. Image diling not support support not suport not suport not support not support not support not	5				-66]/ `	\backslash										-
1 -65 -	5				F	-	ľπ	<u> </u>	COAL: bl									
B 114.0 SILTSTONE grey. -64 -64 -63 -64 -63 -61 116.0 -61 -61 118.0 -61 -61 -60 -61 -61 -60 -62 -61 -63 -61 -64 -61 -65 -60 -66 -61 -67 -60 -68 -60 -69 -60 -60 -60 -60 -60 -60 -60 -759 -759 D -759 <					-65	-	┤┫┫╽											
method AD auger drilling* AS auger screwing* HA hand auger W washbore support M mud C casing samples & field tests B b consistency / relative density UH# very soft SS soft books method AD auger drilling* HA hand auger support method C casing samples & field tests B b b consistency / relative density UH# very soft D very soft SS very soft SS very soft D very soft SS very soft SS </td <td>-CB</td> <td></td> <td></td> <td></td> <td>L</td> <td>114.0-</td> <td></td> <td>••</td> <td>SILTSTO</td> <td>NE: grey.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	-CB				L	114.0-		••	SILTSTO	NE : grey.								-
method AD auger drilling* AS auger screwing* W washbore support M mud Sc auger screwing* Penetration support M mud Sc auger screwing* Penetration support Sc auger screwing* Penetration support M mud Sc auger screwing* Penetration Support Penetration Support Penetration Support Penetration Support Penetration Support Penetration Support Penetration Support Penetration Support Penetration Support Penetration Support Penetra						-		-										-
method AD auger critiling* AA auger screwing* HW washbore support M mud casing samples & field tests B b classification symbol & bisturbed sample consistency / relative density VS very soft S soft S method AD auger critiling* HA hand auger support M mud casing samples & field tests B b classification symbol & bisturbed sample consistency / relative density VS very soft S soft S M hand auger W washbore more sistance manging to the hand encometer (kPa) suff moisture HP moisture HP disturbed sample B disturbed sample B b suff VS very soft S soft S					-64		<u> </u>											
method AD auger drilling* AS auger screwing* HW hand auger W washbore support M mud Support M mud Suport M mud Support M mud Support M mud Support M mud Support M mud					F			.]										-
method AD Abauger drilling" AA auger screwing" HA hand auger W washbore support M mud C casing penetration moresistance rarging to more resistance rarging to more resistance more resistance samples & field tests B b bulk disturbed sample D disturbed sample B b bulk disturbed sample D disturbed sample B b bulk disturbed sample D disturbed sample B b bulk disturbed sample D disturbed sample D disturbed sample B b bulk disturbed sample D disturbed sample B bulk disturbed sample D disturbed sample B bulk disturbed sample D disturbed sample Classification symb & Soil description D disturbed sample D disturbed sample D disturbed sample D disturbed sample D disturbed sample D disturbed sample					-63	-		.]										
method AD auger drilling* AS auger screwing* HA hand auger W washbore support M u d N nil C casing penetration To resistance samples & field tests B bulk disturbed sample D disturbed sample E environmental sample classification symbol & soil description based on Unified Classification System consistency / relative density VS very soft S soft F firm St stiff					F	116.0-	·											
method AD auger drilling* AS auger screwing* HA hand auger W washbore support M mud C casing samples & field tests B bulk disturbed sample D disturbed sample SS split spon sample classification symbol & soil description D disturbed sample consistency / relative density VS very soft S soft D disturbed sample Method HA hand auger mud VS very soft S soft HA hand auger support M mud C casing samples & field tests B bulk disturbed sample SS split spon sample classification symbol & soil description D disturbed sample consistency / relative density VS very soft S soft S soft HP hand penetrometer (RPa)					-62	-			COAL b									-
method -61 -61 -61 -118.0 -60 -60 -118.0 -118.0 -111.0 -60 -60 -111.0 -111.0 -111.0 -53 -53 -53 -53 -53 method -53 -53 -53 -53 M mud N nil -53 -53 -53 M mud auger drilling* -53 -53 -53 M mud auger N nil -53 -53 -53 M mud auger -53 -53 -53 -53 M hand auger -53 -53 -53 -53 M hand auger -53 -53 -53 -53 M hand auger -53 -53 -53 -53 M hand auger -53 -53 -53 -53 </td <td>5</td> <td></td> <td></td> <td></td> <td>02</td> <td> -</td> <td></td> <td></td> <td>COAL DI</td> <td>aon.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	5				02	-			COAL DI	aon.								-
method -61 -61 -118.0 -60 -60 -61 -61 -61 -60 -60 -61 -61 -61 -60 -60 -61 -61 -61 -60 -60 -61 -61 -61 -60 -60 -61 -61 -61 -60 -60 -61 -61 -61 -60 -59 -61 -61 -61 -59 -61 -61 -61 -61 -60 -59 -61 -61 -61 -60 -59 -61 -61 -61 -61 -59 -61 -61 -61 -61 -59 -61 -61 -61 -61 -59 -61 -61 -61 A auger drilling* -60 -61 -61 -61 -61 -61 -61 -61 -61 -61 -61 -61 -61 -61 -61 -61 -71 -62	, גנ ג				F													-
method support samples & field tests iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					-61													
method -60 <t< td=""><td></td><td></td><td></td><td></td><td>F</td><td>118.0-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					F	118.0-												
method AD auger drilling* AS auger screwing* HA hand auger W washbore support M mud C casing samples & field tests B bulk disturbed sample D disturbed sample B disturbed sample B bulk disturbed sample D disturbed sample B bulk disturbed sample D disturbed sample B bulk disturbed sample D disturbed sample B bulk disturbed sample D disturbed sample B bulk disturbed sample D disturbed sample D disturbed sample D disturbed sample D div classification symbol & soil description D base on Unified Classification System S soft F firm St stiff VSt very stiff HP hand penetrometrer (kPa)					-60	-												
method AD auger drilling* AD auger drilling* AD auger drilling* AD auger drilling* AD auger drilling* AD auger screwing* HA hand auger W washbore support M mud C casing samples & field tests B bulk disturbed sample D disturbed sample E environmental sample S s split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) classification symbol & soil description based on Unified Classification System consistency / relative density VS very soft S soft F firm St stiff						-												-
method AD auger drilling* AS auger screwing* HA hand auger W washbore support M mud C casing samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample classification symbol & soil description based on Unified Classification System consistency / relative density VS very soft S soft F firm St stiff v v very soft S soft F firm ranging to ranging to samples & field tests D disturbed sample classification symbol & soil description based on Unified Classification System very soft S soft F firm D dry						-												-
method AD support samples & field tests classification symbol & consistency / relative density AD auger drilling* M M N nil B bulk disturbed sample soil description VS very soft AS auger screwing* C casing D disturbed sample based on Unified S soil description S soft W washbore penetration SS split spoon sample Classification System F firm W washbore D oresistance ranging to U## undisturbed sample ##mm diameter moisture VSt very stiff HP hand penetrometer (kPa) D dry H hard																		1
AS auger screwing* HA hand auger W washbore W mashbore W mashbore W mashbore W mashbore HP hand penetrometer (kPa) HP hand penetrometer (kPa) HC casing to more sistance to the the the the the the the the the the	metho AD	method support samples & field tests of AD auger drilling* M mud N nil B bulk disturbed sample 0										cl	assifica soil d	tion sym escriptio	bol & n	co	nsistency / relative dens	iity
W washbore SS split spoon sample St stiff no resistance ranging to HP hand penetrometer (kPa) D dry H hard	AS HA	AS auger screwing* C casing D disturbed sample HA hand auger E environmental sample										based Classific	on Unifie ation Sys	ed stem	S F	soft		
ranging to HP hand penetrometer (kPa) D dry H hard	W	W washbore penetration SS split spoon sample U## undisturbed sample ##mm diameter moist										sture			St VS	stiff St very stiff		
water N standard penetration test (SPT) M moist Fb friable					wat	er	rang refu	ging to sal	HP N	hand penetrom standard penet	eter (kPa) ration test (SPT)	D M	dry moist			H Fb	hard friable	
* bit shown by suffix ▼ I0-Oct-12 water N° SPT is sample recovered vv wet VL vertoose e.g. AD/T N° SPT with solid cone Wp plastic limit L loose VS vare shear peet/remulted (kPa) WI Initial limit MD modilimit	* e.g.	bit sho AD/T	wn by	suffix	-	▼ 10- lev	Oct-12 el on da	water ite shown	N* Nc	SPT - sample r SPT with solid	ecovered cone ak/remouded (kPa)	Wp WI	plastic l liquid lir	imit nit			. very loose loose	99
B blank bit vol e steal, pearterinduded (kra) vol e steal, pearterinduded (kra) vol e steal vol e steal T T C bit R refusal D dense V V bit HB hammer bouncing VD verv dense	BT	blank b TC bit	oit			wat	ter inflov ter outfle	w ow	R HB	refusal hammer bound	ing						dense verv dense	

CDF_0_9_06_LIBRARY.GLB rev.AM Log COF BOREHOLE: NON CORED GEOTWARA22658AA.GPJ <<DrawingFile>> 02/08/2016 13:10

ATETRA	TECH	COMP	ANY											Boreh	nole ID.		BH16	6-03	
Fn	in	n۵	orin	n I		- n	R٥	reho	ما					sheet	:	-	11 of 11		
	'g'			9		9 -								proje	ct no.		GEOT	WARA226	<u>58A</u>
client	:	HE.	ALIHI	NFR	RASI	RUC	IURI							dates	started:	2	20 Jui	n 2016	
princi	pal:													date	complet	ed:	23 Jui	n 2016	
proje	ct:	PR	OPOSE	ED E	BUILL	DING								logge	d by:		TT		
locati	on:	МU	SWELL	.BR	OOK	(HO	SPITA	4 <i>L</i>						check	ked by:		SJB		
positio	n: E:	30213	9; N: 6428	329 (1	MGA94	.)		surface	elevation:	178.63 m (AHD)		angle	from ho	orizontal:	90°			
drillin	ng info	ormati	on			mate	erial sub	ostance	iuia:				casin	y diame	ter: Pw				_
.*	ttion		samples &			ő	tion		mate	rial description				sy / insity	hand		stru	icture and	
method 8 support	2 penetra	water	field tests	RL (m)	depth (m	graphic lo	classifica symbol	SOI	L TYPE : plast blour, seconda	icity or particle ch ary and minor cor	aracteristic, nponents	,	moisture condition	consistenc relative de	(kPa)		addition		
		-		-					DDED SILT	STONE AND S	ANDSTO	NE			- 0 0 4				-
				-58	-		ļ	biowingie	;y.										-
					-		-												-
							1												-
				-57			ł												=
				-	122.0-														-
- CB				-56	-		1												-
					-		Ì												-
0				-		<u></u>	-								liii				-
16 13:1				-55			l												-
/08/20				-	124.0-		l												-
>> 03				-54	-		ł												-
vingFile					-	· · · · ·		Borehole	BH16-03 te	rminated at 124	4.80 m								
< <drav< td=""><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drav<>				F															-
GPJ				-53	-														-
2658A/				-	126.0-	1													-
ARAZ				-52	-	-													-
EOT A						1													_
ζED ζ				-															-
				-51	-	1													-
				-	128.0-	1													-
XEH				-50		-													-
ц. Т.					.														-
Log				F															I
rev:AM				-49	-	1													
Y.GLB				F	130.0-	1													-
BRAR				-48	-	-													-
00_0				0															
				-															-
8				-47	-	1													
metho	d			sup	port	1	1	same	les & field te	sts		cla	assifica	ion sym	bol &	con	sistency /	relative density	
AD AS	auger auger	drilling' screwir	ng*	м С	mud casing	Ν	l nil	B D	bulk distu disturbed	rbed sample sample			soil de based	on Unifie	n ed	VS S		very soft soft	
HA W	nand a washb	luger ore		pen		ı		E SS	environm split spoo	ental sample n sample			Jassific	ation Sys	tem	F St		firm stiff	
					L	no re rangii	sistance ng to	U## HP	undisturb hand pen	ed sample ##mm etrometer (kPa)	diameter	D	sture dry			VSt H		very stiff hard	
*	bit sho	wn by :	suffix	wat	ter 10-	Oct-12 w	ater	N N*	standard SPT - sar	penetration test (nple recovered	SPI)	M W	moist wet	mit		Fb VL		triable very loose	
e.g. B	AD/T blank b	oit			lev wa	el on date ter inflow	e shown	NC VS	SPT with vane she	solia cone ar; peak/remoude	ed (kPa)	WI	liquid lir	nit		MD		noose medium dense	
T V	TC bit V bit						N	к НВ	hammer b	oouncing						VD		very dense	

BH16-01 DENSITYC 1:200

COMPANY	: COFFEY GEOTECH		OTHER SERVICES:	
WELL	BH16-01 DENSITYC		DEN	
LOCATION/FIELD	: 1:200 HOSPITAL			
COUNTY	: AUST MUSWELLBROOK			
LOCATION	: NA			
SECTION	e let.	TOWNSHIP	: NA	RANGE : NA
	06/17/16			
DATE	: 115.75	PERMANENT DATUM	: 2.4	
DEPTH DRILLER	8 1-9 3R			KB NA
LOG BOTTOM	115.27	LOG MEASURED FROM	: GL	DF : NA
LOG TOP	-2.19	DRL MEASURED FROM	: GL	GL : 0
CASING DIAMETER	: 10.	LOGGING UNIT	: 120	
CASING TYPE	: HQ	FIELD OFFICE	RUTHERFORD	
CASING THICKNESS	S: .5	RECORDED BY	MCRANE	
BIT SIZE	9.60	BOREHOLE FLUID	: 0	FILE : PROCESSED
MAGNETIC DECL.	: 0	RM	: 0	TYPE : 9239C1
MATRIX DENSITY	: 2.65	RM TEMPERATURE	: 0	LGDATE: 06/17/16
NEUTRON MATRIX	SANDSTONE	MATRIX DELTA T	: 177	LGTIME : 11:07:
				THRESH: 99999
	IN RODS			
	TOP OF BARREL 111.5			
	ALL SERVICES PROV	IDED SUBJECT TO STAN	IDARD TERMS AND COM	VDITIONS

GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)

BH16-03 DENSITYc 1:200

COMPANY WELL LOCATION/FIELD COUNTY LOCATION	: COFFEY GEOTECH : BH16-03 DENSITYc 1:200 : : AUST : JESMOND		OTHER SERVICES: DEN	
SECTION	: NA	TOWNSHIP	: NA	RANGE : NA
DATE DEPTH DRILLER LOG BOTTOM	: 06/23/16 : 125 : 124.55	PERMANENT DATUM	: -1.15 : GL	KB : NA DF : NA
LOG TOP	-1.61	DRL MEASURED FROM	: GL	GL : 0
CASING DIAMETER	: 10.	LOGGING UNIT	: 120	
CASING TYPE	HQ STEE	FIELD OFFICE	RUTHERFORD	
CASING THICKNESS	S: .5	RECORDED BY	: M CRANE	
BIT SIZE MAGNETIC DECL. MATRIX DENSITY NEUTRON MATRIX	: 9.60 : 0 : 2.65 : SANDSTONE	BOREHOLE FLUID RM RM TEMPERATURE MATRIX DELTA T	: 0 : 0 : 0 : 177	FILE : PROCESSED TYPE : 9239C1 LGDATE : 06/23/16 LGTIME : 09:44: THRESH: : 99999
	LOFFED THROUGH THE F	RODS		
	CORRECTED FOR STEEL	-		
	ALL SERVICES PROV	IDED SUBJECT TO STAN	IDARD TERMS AND CON	NDITIONS

Coffey Geotechnics

Borehole BH16-01

ACOUSTIC TELEVIEWER PETROPHYSICAL REPORT

Groundsearch Australia Pty. Limited

15 July 2016

1

Groundsearch	Australia
BH16-01AT	V.doc

DISCLAIMER

The data used in this report were obtained using equipment manufactured by the Century Geophysical Corporation. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Coffey Geotechnics sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Coffey Geotechnics and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

10-

John Lea BSc (Hons) FAusIMM MMICA MAIMVA (CPA) Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one 9.6cm diameter, vertical, noncored borehole that was drilled as a component of the 2016 geotechnical exploration programme for Coffey Geotechnics Muswellbrook Hospital Project.

Century Geophysical Corporation downhole 9804 acoustic televiewer and 9329 density tools were run to collect data in the field on 13 July 2016 and 17 June 2016 respectively. The density run was through drill rods and the data corrected to reflect open hole conditions. This report is for data from 15.50 to 113.11 mbgl.

The borehole wall sonic data appear to be affected by rugosity caused by the drilling method used.

The 284 identified features are interpreted as bedding (75%), fractures, washouts, the SWL and top of the abandoned coal workings. The bedding to fractures ratio is 4:1. The coal contains some high angle features that are probably cleats.

The Century Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data is referenced to magnetic north.

	Page #
Disclaimer	2
Executive Summary	3
1.0 Background Technical Information 2.0 Interpretation Methodology 3.0 Borehole BH16-01Interpretation	5 5 7
List of Tables	Page
Table 1 Interpreted features report for BH16-01 Table 2 BH16-01bedding histogram data Table 3 BH16-01fracture histogram data	7 - 13 16 17
List of Figures	Page
Figure 1 BH16-01circular graphical representation of interpreted features Figure 2 BH16-01features dip angle data distribution Figure 3 BH16-01features dip direction data distribution Figure 4 BH16-01bedding dip direction data rose diagram Figure 5 BH16-01bedding dip angle histogram Figure 6 BH16-01bedding dip direction histogram Figure 7 BH16-01fracture dip direction data rose diagram Figure 8 BH16-01fracture dip angle data distribution	14 15 16 16 16 17
Figure 9 BH16-01 fracture dip direction data distribution	17

Appendix 1 1:20 Interpretation logs – 15.50 to 113.11 mbgl

1.0 Background technical information

The data contained in this report were obtained from one 9.6cm diameter, vertical, noncored borehole that was drilled as a component of the 2016 geotechnical exploration programme for Coffey Geotechnics Muswellbrook Hospital Project.

Century Geophysical Corporation downhole 9804 acoustic televiewer and 9329 density tools were run to collect data in the field on 13 July 2016 and 17 June 2016 respectively. The density run was through drill rods and the data corrected to reflect openhole conditions. This report is for data from 15.50 to 113.11 mbgl.

The borehole wall sonic data appear to be affected by rugosity caused by the drilling method used.

The 284 identified features are interpreted as bedding (75%), fractures, washouts, the SWL and top of the abandoned coal workings. The bedding to fractures ratio is 4:1. The coal contains some high angle features that are probably cleats.

The Century Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data is referenced to magnetic north.

The Century Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data is referenced to magnetic north.

Subsequent processing and interpretation of data were carried out by Groundsearch.

The ATV takes an oriented image of the borehole using high-resolution sound waves. This acoustic image is displays amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 256 measurements around the borehole at each high-resolution sample interval. These data can be oriented to North and displayed real-time while logging using the Visual Compu-Log System.

Analysis software includes colour adjustment, fracture dip and strike determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual; two-point definition of a feature's top and base to produce a sine curve. The sides of the time and

Groundsearch Australia	5
BH16-01ATV.doc	

amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool slant angle and bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains a;

- Text summary of the interpreted features
- Circular representation of interpreted features
- Logs that show geological features with their subjective, numbered interpretation curves shown at 1:20 scale. The logs are in standard format whereby the optical image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata;
 - Amplitude image differentials
 - Tadpoles that represent feature dip and dip direction
 - Open fracture planes in **RED**
 - Partially open fractures in **MAGENTA**
 - Discontinuous fractures in DARK BLUE
 - Natural gamma
 - Slant (dip angle)
 - Slant angle bearing
 - Long and short space density
- Table containing feature curve ID, top, base, dip angle, dip azimuth, feature description and the generalised rock type that hosts the feature
- Graphical representations of the interpreted features

Groundsearch	Australia
BH16-01AT	V.doc

3.0 Borehole BH16-01 interpretation

The borehole wall sonic data appear to be affected by rugosity caused by the drilling method used.

The 284 identified features are interpreted as bedding (75%), fractures, washouts, the SWL and top of the abandoned coal workings. The bedding to fractures ratio is 4:1. The coal contains some high angle features that are probably cleats.

A description of each interpreted feature is presented in Table 1 and the log is presented in Appendix 1.

Table 1 Interpreted features report for BH16-01

FEATURE	DIP	AZIMUTH	MIDPOINT	TOP	BASE	TYPE OF	GENERALISED
ID	(DEG)	(DEG)	(MBGL)	(M)	(M)	FEATURE	ROCK TYPE
1			15.85	15.85	15.85	SWL	Overburden
2	5	258	17.99	17.98	17.99	Bedding plane	Overburden
3	6	279	18.05	18.04	18.05	Bedding plane	Overburden
4	42	113	18.42	18.38	18.46	Fracture plane - open	Overburden
5	52	282	18.42	18.36	18.49	Fracture plane - open	Overburden
6	45	142	20.05	20.00	20.10	Fracture plane - open	Overburden
7	36	73	20.85	20.82	20.89	Bedding plane	Overburden
8	35	84	20.88	20.85	20.92	Bedding plane	Overburden
9	54	108	20.94	20.87	21.00	Fracture plane - open	Overburden
10	17	285	21.07	21.06	21.09	Bedding plane	Overburden
11	3	240	21.22	21.22	21.23	Bedding plane	Overburden
12	5	248	21.28	21.27	21.28	Bedding plane	Overburden
13	28	205	23.01	22.99	23.04	Top of washout	Overburden
14	5	88	23.22	23.21	23.22	Base of washout	Overburden
15	53	232	23.23	23.17	23.29	Fracture plane - open	Overburden
16	5	232	25.13	25.12	25.13	Bedding plane	Overburden
17	12	241	26.03	26.02	26.04	Bedding plane	Overburden
18	5	249	27.01	27.00	27.01	Bedding plane	Overburden
19	5	243	27.05	27.04	27.05	Bedding plane	Overburden
20	3	240	27.30	27.30	27.31	Bedding plane	Overburden
21	10	233	27.33	27.32	27.34	Bedding plane	Overburden
22	5	238	28.94	28.94	28.95	Bedding plane	Overburden
23	2	270	32.15	32.15	32.15	Bedding plane	Overburden
24	2	276	32.62	32.62	32.63	Bedding plane	Overburden
25	24	210	32.89	32.87	32.92	Bedding plane	Overburden
26	7	59	33.09	33.09	33.10	Bedding plane	Overburden
27	15	307	33.32	33.30	33.33	Bedding plane	Overburden
28	2	270	33.86	33.85	33.86	Bedding plane	Overburden
29	5	250	35.76	35.76	35.77	Bedding plane	Overburden
30	2	271	35.79	35.79	35.79	Bedding plane	Overburden
31	7	246	36.03	36.03	36.04	Bedding plane	Overburden
Г			Grour	ndsearch	Australia		7

32	7	254	36.15	36.14	36.15	Bedding plane	Overburden
33	5	95	36.42	36.41	36.42	Bedding plane	Overburden
34	20	173	37.92	37.90	37.94	Fracture plane - open	Overburden
35	7	268	38.09	38.09	38.10	Bedding plane	Overburden
36	33	294	38.72	38.69	38.76	Fracture plane - open	Overburden
37	56	222	39.18	39.11	39.25	Fracture plane - partially open	Overburden
38	35	269	39.21	39.18	39.24	Fracture plane - partially open	Overburden
39	5	68	39.71	39.71	39.72	Bedding plane	Overburden
40	14	58	40.12	40.11	40.13	Bedding plane	Overburden
41	58	282	40.22	40.15	40.30	Fracture plane - open	Overburden
42	48	3	40.33	40.28	40.39	Fracture plane - open	Overburden
43	7	194	40.45	40.45	40.46	Bedding plane	Overburden
44	21	286	40.98	40.96	40.99	Top of washout	Overburden
45	20	301	41.34	41.32	41.35	Base of washout	Overburden
46	26	33	41.52	41.50	41.55	Top of washout	Overburden
47	32	333	41.87	41.84	41.90	Base of washout	Overburden
48	2	65	42.18	42.18	42.18	Bedding plane	Overburden
49	6	250	44.66	44.66	44.67	Bedding plane	Overburden
50	9	290	44.77	44.76	44.78	Bedding plane	Overburden
51	11	254	46.42	46.41	46.43	Bedding plane	Overburden
52	4	255	47.63	47.62	47.63	Bedding plane	Overburden
53	10	130	49.17	49.16	49.18	Bedding plane	Overburden
54	27	193	49.65	49.63	49.68	Bedding plane	Overburden
55	20	207	49.71	49.69	49.73	Bedding plane	Overburden
56	5	323	49.97	49.97	49.97	Bedding plane	Overburden
57	12	317	50.02	50.01	50.03	Bedding plane	Overburden
58	20	29	50.67	50.65	50.69	Fracture plane - partially open	Overburden
59	2	271	53.27	53.27	53.28	Bedding plane	Overburden
60	16	74	54.57	54.55	54.58	Bedding plane	Overburden
61	16	44	54.69	54.68	54.71	Bedding plane	Overburden
62	9	35	54.83	54.82	54.84	Bedding plane	Overburden
63	7	340	55.16	55.16	55.17	Bedding plane	Overburden
64	12	344	55.29	55.28	55.30	Bedding plane	Overburden
65	34	343	55.81	55.78	55.85	Fracture plane - open	Overburden
66	9	117	56.19	56.18	56.20	Bedding plane	Overburden
67	5	220	56.25	56.25	56.25	Bedding plane	Overburden
68	5	199	56.30	56.30	56.31	Bedding plane	Overburden
69	2	299	56.44	56.44	56.45	Bedding plane	Overburden
70	18	305	56.63	56.61	56.64	Bedding plane	Overburden
71	18	321	56.80	56.78	56.82	Bedding plane	Overburden
72	16	333	56.84	56.83	56.85	Bedding plane	Overburden
73	13	272	56.89	56.88	56.91	Bedding plane	Overburden
74	10	232	56.95	56.95	56.96	Bedding plane	Overburden
75	5	223	57.01	57.01	57.02	Bedding plane	Overburden
76	2	223	57.07	57.07	57.08	Bedding plane	Overburden
77	_ 15	302	57.65	57.64	57.66	Bedding plane	Overburden
			Grou	Indeparch			8
			E	BH16-01AT	V.doc		-

			(Coffey Geo	technics						
	Borehole BH16-01 Acoustic Televiewer Petrophysical Report										
78	15	316	57 60	57 68	57 70	Bedding plane	Overburden				
70 79	7	23	57.87	57.00	57.88	Bedding plane	Overburden				
80	7	320	57.07	57.07	57.00	Bedding plane	Overburden				
81	5	220	57.94	57.94	57.94	Bodding plane	Overburden				
01	14	223	57.90	59.04	59.07	Bedding plane	Overburden				
02	14 5	535	59.05	50.04 50.17	50.07	Bedding plane	Overburden				
03 Q <i>1</i>	12	212	59.10	59.17	50.10	Bedding plane	Overburden				
04 05	14	216	50.22	50.21	50.23	Bedding plane	Overburden				
00	14 5	242	50.52	50.31	50.34	Bedding plane	Overburden				
00 97	14	04	50.44	50.43	50.44	Bedding plane	Overburden				
07	7	94 264	59.04	59.02	59.05	Bedding plane	Overburden				
00 90	11	204	59.07	59.07	50.00	Bedding plane	Overburden				
09	0	105	50.20	50.24	50.22	Bedding plane	Overburden				
90	0	90	59.55	59.55	50.60	Bedding plane	Overburden				
91	10	240	59.00	59.00 50.75	59.09	Bedding plane	Overbuilden				
92	10	207	59.70	09.70 60.07	59.77 60.00	Bedding plane	Overburden				
93	9 10	157	60.00	60.07	60.09	Bedding plane	Overburden				
94 05	12	100	62.59	60.1Z	62.50	Bedding plane	Overburden				
90	14	233	62.00	62.00	62.09	Bedding plane	Overburden				
90 07	2	240	62.12	62 14	00.1Z	Bedding plane	Overburden				
97	0	200	63.14	63.14	63.78	Bedding plane	Overburden				
90	3	100	64.50	64 50	64 50	Bedding plane	Overburden				
99 100	2	264	64.58	64.50	64.50	Bodding plane	Overburden				
100	5	204	64.82	6/ 81	64.82	Top of coal unit					
101	1	270	64.88	64.88	64.82	Bedding plane					
102	72	209	64.92	64.77	65.08	Eracture plane - partially open					
104	2	284	64.95	64 94	64 95	Bedding plane	COAL SEAM				
105	2	281	65.05	65.05	65.05	Bedding plane	COAL SEAM				
106	5	292	65.00	65.00	65 14	Bedding plane	COAL SEAM				
107	8	232	65 21	65.20	65 22	Bedding plane	COAL SEAM				
108	74	286	65.25	65.09	65.42	Fracture plane - partially open	COAL SEAM				
109	5	290	65 44	65 44	65 45	Bedding plane	COAL SEAM				
110	0	210	65 51	65.51	65 51	Base of coal unit	COAL SEAM				
111	10	179	66.07	66.06	66.08	Bedding plane	Interburden				
112	77	308	66.25	66.03	66.46	Fracture plane - partially open	Interburden				
113	76	296	67.04	66.84	67.24	Fracture plane - partially open	Interburden				
114	2	320	67.41	67.41	67.41	Bedding plane	Interburden				
115	9	243	67.60	67.59	67.61	Bedding plane	Interburden				
116	7	64	68.02	68.01	68.02	Bedding plane	Interburden				
117	8	89	68.11	68.10	68.12	Bedding plane	Interburden				
118	7	261	68.56	68.56	68.57	Bedding plane	Interburden				
119	0	90	68.79	68.79	68.79	Bedding plane	Interburden				
120	15	327	69.04	69.03	69.06	Bedding plane	Interburden				
121	7	300	69.10	69.09	69.10	Bedding plane	Interburden				
122	5	270	69.67	69.67	69.68	Bedding plane	Interburden				
123	0	333	71.14	71.14	71.14	Bedding plane	Interburden				
			Grou	Indsearch	Australia		9				
			E	3H16-01AT	V.doc						

			(Coffey Geo	technics			1			
	Borenole BH16-01 Acoustic Televiewer Petrophysical Report										
124	2	106	71 47	71 46	71 47	Bedding plane		Interburden			
125	2	306	73.11	73.11	73.11	Bedding plane		Interburden			
126	5	260	73 23	73.23	73 24	Bedding plane		Interburden			
127	7	218	73.82	73.81	73.83	Bedding plane		Interburden			
128	17	55	73.92	73.90	73.93	Bedding plane		Interburden			
129	2	75	74.04	74.04	74.04	Bedding plane		Interburden			
130	2	261	74.13	74.13	74.13	Bedding plane		Interburden			
131	69	304	74.19	74.07	74.32	Fracture plane - partially oper	1	Interburden			
132	74	308	74.32	74.14	74.49	Fracture plane - partially oper	1	Interburden			
133	74	308	74.50	74.33	74.67	Fracture plane - partially oper	1	Interburden			
134	0	90	75.06	75.06	75.06	Bedding plane		Interburden			
135	7	239	75.29	75.28	75.29	Bedding plane		Interburden			
136	12	244	75.30	75.29	75.31	Bedding plane		Interburden			
137	5	225	75.38	75.37	75.38	Bedding plane		Interburden			
138	7	225	75.41	75.41	75.42	Bedding plane		Interburden			
139	7	248	75.48	75.47	75.49	Bedding plane		Interburden			
140	5	236	75.51	75.51	75.52	Bedding plane		Interburden			
141	5	248	75.54	75.54	75.55	Bedding plane		Interburden			
142	7	254	75.72	75.72	75.73	Bedding plane		Interburden			
143	10	254	75.87	75.86	75.88	Bedding plane		Interburden			
144	12	301	76.93	76.92	76.94	Top of washout		Interburden			
145	5	271	76.98	76.97	76.98	Base of washout		Interburden			
146	0	277	77.77	77.77	77.77	Bedding plane		Interburden			
147	2	276	79.28	79.28	79.28	Bedding plane		Interburden			
148	5	300	79.20	79 40	79 40	Bedding plane		Interburden			
149	7	271	79.57	79.56	79.58	Bedding plane		Interburden			
150	39	296	81.08	81.05	81.12	Fracture plane - open		Interburden			
151	7	266	81.17	81.16	81.17	Bedding plane		Interburden			
152	2	274	82.20	82.20	82.21	Bedding plane		Interburden			
153	2	246	82.55	82.55	82.55	Bedding plane		Interburden			
154	77	109	82.66	82.46	82.86	Fracture plane - discontinuous	S	Interburden			
155	5	254	82.77	82.77	82.78	Bedding plane		Interburden			
156	7	253	82.87	82.87	82.88	Bedding plane		Interburden			
157	5	310	83.12	83.12	83.13	Bedding plane		Interburden			
158	9	337	83.21	83.21	83.22	Top of washout		Interburden			
159	8	300	83.69	83.68	83.70	Base of washout		Interburden			
160	2	292	83.76	83.75	83.76	Top of washout		Interburden			
161	10	295	83.98	83.97	83.99	Base of washout		Interburden			
162	5	317	85.23	85.22	85.23	Bedding plane		Interburden			
163	5	233	86.15	86.14	86.15	Bedding plane		Interburden			
164	10	89	86.51	86.50	86.52	Bedding plane		Interburden			
165	2	314	86.59	86.58	86.59	Bedding plane		Interburden			
166	63	91	86.86	86.76	86.95	Fracture plane - partially oper)	Interburden			
167	2	268	87.34	87.34	87.34	Bedding plane	-	Interburden			
168	81	205	87.35	87.05	87.65	Fracture plane - partially oper	h	Interburden			
169	2	343	87.68	87.68	87.68	Bedding plane		Interburden			
	—	0.0	Grou	Indeparch	Australia		10				
	BH16-01ATV.doc										

			(Coffey Geo	otechnics		
		Borehol	e BH16-01 Ac	oustic Tel	eviewer P	etrophysical Report	
170	57	261	88.65	88.58	88.73	Fracture plane - open	Interburden
171	0	249	88.88	88.88	88.88	Bedding plane	Interburden
172	48	81	89.05	88.99	89.10	Fracture plane - partially open	Interburden
173	5	34	89.17	89.17	89.17	Bedding plane	Interburden
174	7	12	89 24	89.23	89 24	Bedding plane	Interburden
175	7	18	89.26	89.26	89 27	Bedding plane	Interburden
176	11	42	89.36	89.35	89.37	Bedding plane	Interburden
177	2	289	89.39	89.39	89.39	Bedding plane	Interburden
178	5	268	90.00	90.09	90.10	Bedding plane	Interburden
170	5	107	90.00	90.00 90.46	90.10 90.46	Bedding plane	Interburden
180	7	320	90. 4 0 90.90	00.40 00.80	00.40 00.00	Top of coal unit	
181	7	18	01 55	01 55	01 56	Base of coal unit	
182	20	133	91.55	01.03	01.00	Bodding plano	
102	20	155	91.95	02.07	02.00	Bedding plane	Interburden
103	14 5	157	92.00	92.07	92.09	Top of cool unit	
104	5	200	92.41	92.40	92.41	Podding plopo	
100	2	200	92.00	92.00	92.00	Bedding plane	
100	0	200	93.47	93.47	93.47	Bedding plane	
187	1	264	93.51	93.50	93.51	Bedding plane	
188	12	224	93.64	93.63	93.65	Bedding plane	COAL SEAM
189	/	261	93.65	93.64	93.66	Bedding plane	COAL SEAM
190	2	99	93.71	93.71	93.72	Bedding plane	COAL SEAM
191	7	230	93.82	93.81	93.83	Base of coal unit	COAL SEAM
192	5	249	93.89	93.88	93.89	Bedding plane	Interburden
193	2	302	94.01	94.01	94.01	Bedding plane	Interburden
194	2	251	94.19	94.18	94.19	Bedding plane	Interburden
195	10	225	94.44	94.44	94.45	Top of coal unit	COAL SEAM
196	12	251	94.73	94.72	94.74	Bedding plane	COAL SEAM
197	5	287	95.16	95.15	95.16	Bedding plane	COAL SEAM
198	0	90	95.29	95.29	95.29	Base of coal unit	COAL SEAM
199	0	90	95.35	95.35	95.35	Bedding plane	Interburden
200	0	90	99.39	99.39	99.39	Bedding plane	Interburden
201	33	59	99.42	99.39	99.45	Fracture plane - open	Interburden
202	10	63	99.49	99.48	99.50	Bedding plane	Interburden
203	5	68	99.60	99.60	99.61	Bedding plane	Interburden
204	12	62	99.78	99.77	99.79	Top of coal unit	COAL SEAM
205	12	60	99.78	99.77	99.79	Top of washout	COAL SEAM
206	5	39	99.95	99.95	99.95	Base of washout	COAL SEAM
207	67	189	99.98	99.87	100.09	Fracture plane - partially open	COAL SEAM
208	57	224	100.19	100.12	100.27	Fracture plane - open	COAL SEAM
209	75	214	100.38	100.20	100.55	Fracture plane - discontinuous	COAL SEAM
210	41	301	100.41	100.37	100.45	Fracture plane - open	COAL SEAM
211	69	139	100.43	100.30	100.55	Fracture plane - partially open	COAL SEAM
212	37	304	100.43	100.40	100.47	Fracture plane - open	COAL SEAM
213	49	304	100.49	100.44	100.55	Fracture plane - partially open	COAL SEAM
214	51	235	100.59	100.53	100.65	Fracture plane - partially open	COAL SEAM
215	61	250	100.73	100.64	100.82	Fracture plane - partially open	COAL SEAM
		-	Grou	Indsearch	Australia	11	
			E	BH16-01AT	V.doc	···	

	Coffey Geotechnics Borehole BH16-01 Acoustic Televiewer Petrophysical Report									
216	58	222	100.83	100.75	100.90	Fracture plane - partially open	COAL SEAM			
217	42	292	100.98	100.94	101.03	Fracture plane - open	COAL SEAM			
218	7	258	101.26	101.25	101.27	Bedding plane	COAL SEAM			
219	40	292	101.34	101.30	101.38	Fracture plane - partially open	COAL SEAM			
220	45	280	101.55	101.50	101.60	Fracture plane - partially open	COAL SEAM			
221	5	266	101.65	101.65	101.66	Bedding plane	COAL SEAM			
222	10	279	101.72	101.71	101.72	Bedding plane	COAL SEAM			
223	75	302	101.83	101.66	102.00	Fracture plane - partially open	COAL SEAM			
224	57	276	101.84	101.77	101.92	Fracture plane - partially open	COAL SEAM			
225	3	263	101.95	101.95	101.96	Bedding plane	COAL SEAM			
226	47	44	102.15	102.10	102.20	Fracture plane - partially open	COAL SEAM			
227	57	44	102.27	102.20	102.34	Fracture plane - open	COAL SEAM			
228	59	264	102.41	102.33	102.49	Fracture plane - partially open	COAL SEAM			
229	12	241	102.49	102.48	102.50	Bedding plane	COAL SEAM			
230	2	266	102.68	102.68	102.68	Bedding plane	COAL SEAM			
231	2	253	102.72	102.71	102.72	Bedding plane	COAL SEAM			
232	7	272	102.73	102.72	102.74	Base of coal unit	COAL SEAM			
233	8	275	102.87	102.86	102.87	Bedding plane	Interburden			
234	0	90	102.90	102.90	102.90	Bedding plane	Interburden			
235	12	52	103.89	103.88	103.90	Bedding plane	Interburden			
236	20	111	106.10	106.09	106.12	Bedding plane	Interburden			
237	15	104	106.13	106.11	106.14	Bedding plane	Interburden			
238	5	332	106.28	106.27	106.28	Bedding plane	Interburden			
239	8	301	106.34	106.33	106.34	Bedding plane	Interburden			
240	10	58	106.41	106.40	106.42	Bedding plane	Interburden			
241	8	43	106.44	106.43	106.45	Bedding plane	Interburden			
242	10	18	106.47	106.46	106.47	Bedding plane	Interburden			
243	8	311	106.59	106.59	106.60	Bedding plane	Interburden			
244	10	301	106.61	106.60	106.62	Bedding plane	Interburden			
245	12	89	106.66	106.65	106.67	Bedding plane	Interburden			
246	8	18	106.88	106.88	106.89	Bedding plane	Interburden			
247	13	306	106.93	106.92	106.94	Bedding plane	Interburden			
248	10	327	106.98	106.97	106.99	Bedding plane	Interburden			
249	10	331	107.00	106.99	107.01	Bedding plane	Interburden			
250	5	20	107.16	107.16	107.17	Bedding plane	Interburden			
251	2	310	107.10	107.10	107.17	Top of coal unit	COAL SEAM			
252	3	291	108.01	108.01	108.01	Bedding plane	COAL SEAM			
253	5	306	108.09	108.09	108.09	Bedding plane	COAL SEAM			
254	16	348	108.00	108.00	108.00	Bedding plane	COAL SEAM			
255	5	251	108.10	108.10	108.34	Bedding plane	COAL SEAM			
256	10	243	108.40	108.39	108.04	Bedding plane	COAL SEAM			
257	81	213	108.53	108.00	108.84	Fracture plane - partially open	COAL SEAM			
258	83	205	108.57	108.20	108.93	Fracture plane - partially open	COAL SEAM			
259	2	246	108.70	108.20	108.70	Bedding plane	COAL SEAM			
260	70	270	108.78	108.53	109.70	Fracture plane - partially open	COAL SEAM			
261	73	193	109.06	108.00	109.00	Fracture plane - partially open	COAL SEAM			
	10	100		Indeparet	Australia					
			E	BH16-01AT	Ausu alid V.doc	12	-			

	Coffey Geotechnics									
	Borenole BH16-01 Acoustic Televiewer Petrophysical Report									
262	2	308	109.06	109.06	109.06	Bedding plane	COAL SEAM			
263	3	296	109.12	109.12	109.12	Bedding plane	COAL SEAM			
264	64	269	109.16	109.06	109.25	Fracture plane - discontinuous	COAL SEAM			
265	3	270	109.29	109.29	109.29	Bedding plane	COAL SEAM			
266	82	304	109.42	109.10	109.73	Fracture plane - partially open	COAL SEAM			
267	5	222	109.56	109.56	109.57	Bedding plane	COAL SEAM			
268	3	239	109.68	109.68	109.68	Bedding plane	COAL SEAM			
269	0	90	109.80	109.80	109.80	Bedding plane	COAL SEAM			
270	5	265	110.11	110.11	110.12	Bedding plane	COAL SEAM			
271	5	264	110.15	110.14	110.15	Bedding plane	COAL SEAM			
272	82	317	110.15	109.85	110.46	Fracture plane - discontinuous	COAL SEAM			
273	7	291	110.27	110.26	110.27	Bedding plane	COAL SEAM			
274	7	250	110.75	110.75	110.76	Bedding plane	COAL SEAM			
275	5	280	110.83	110.83	110.83	Bedding plane	COAL SEAM			
276	9	223	110.88	110.87	110.89	Bedding plane	COAL SEAM			
277	3	238	111.07	111.07	111.07	Bedding plane	COAL SEAM			
278	5	243	111.08	111.08	111.09	Bedding plane	COAL SEAM			
279	80	233	111.19	110.92	111.46	Fracture plane - partially open	COAL SEAM			
280	5	42	111.30	111.30	111.31	Bedding plane	COAL SEAM			
281	81	235	111.41	111.09	111.72	Fracture plane - partially open	COAL SEAM			
282	18	44	111.41	111.39	111.43	Fracture plane - open	COAL SEAM			
283	0	249	111.86	111.86	111.86	Bedding plane	COAL SEAM			
284	5	258	112.11	112.10	112.11	Top of coal void	COAL SEAM			
FEATURE	DIP	AZIMUTH	MIDPOINT	TOP	BASE	TYPE OF	GENERALISED			
ID	(DEG)	(DEG)	(MBGL)	(M)	(M)	FEATURE	ROCK TYPE			

Groundsearch Australia	I
BH16-01ATV.doc	

Figure 1 BH16-01 circular plan representation of interpreted features

The 213 identified sedimentary features are predominantly bedding planes that appear to range in dip from flat-lying to 36[°]. Figures 2 and 3 show the distribution of the planes' dip angles and dip direction with depth.

Table 2 details the variation in the dip angle and dip direction data. Figure 4 shows the dip direction data in a rose diagram with the bedding planes' dip angle and dip direction data shown as histograms in Figures 5 and 6.

The 55 fractures are identified has as open (35%), partially open (58%) and discontinuous (7%).

Table 3 details the variation in the fractures' dip angle and dip direction data. Figure 7 shows the dip direction data in a rose diagram with the fractures' plane dip angle and dip direction data as histograms in Figures 8 and 9.

Groundsearch	Australia
BH16-01AT	V.doc

Figure 2 BH16-01feature dip angle data distribution

Figure 3 BH16-01feature dip direction data distribution

Table 2 BH16-01bedding histogram data

	Dip Distribution		Orie	entation Distribut	ion
Din Range	Count	%	Rearing Range	Count	%
0 to 10	166	77.9	0 to 10	0	0.0
10 to 20	42	19.7	10 to 20	5	2.3
20 to 30	3	1.4	20 to 30	2	0.9
30 to 40	2	0.9	30 to 40	2	0.9
40 to 50	0	0.0	40 to 50	4	1.9
50 to 60	0	0.0	50 to 60	5	2.3
60 to 70	0	0.0	60 to 70	7	3.3
70 to 80	0	0.0	70 to 80	3	1.4
80 to 90	0	0.0	80 to 90	4	1.9
			90 to 100	11	5.2
			100 to 110	4	1.9
			110 to 120	2	0.9
			120 to 130	1	0.5
			130 to 140	1	0.5
			140 to 150	0	0.0
			150 to 160	3	1.4
			160 to 170	0	0.0
			170 to 180	1	0.5
			180 to 190	1	0.5
			190 to 200	3	1.4
			200 to 210	2	0.9
			210 to 220	3	1.4
			220 to 230	10	4.7
			230 to 240	11	5.2
			240 to 250	21	9.9
			250 to 260	19	8.9
			260 to 270	18	8.5
			270 to 280	19	8.9
			280 to 290	7	3.3
			290 to 300	7	3.3
			300 to 310	12	5.6
			310 to 320	10	4.7
			320 to 330	5	2.3
			330 to 340	6	2.8
			340 to 350	4	1.9
			350 to 360	0	0.0

Figure 5 BH16-01bedding dip angles histogram

Figure 4 BH16-01bedding dip direction data rose diagram

Figure 6 BH16-01bedding dip directions histogram

Top of Coal Unit, Bedding Plane, Base of Coal Unit In Bore: BH16-01

Table 3 BH16-01 fractures histogram data

	Dip Distribution		Orie	entation Distributi	on
Din Dongo	Total. 55	0/	Pooring Dongo	Total: 55	0/
Dip Kange	Count	70	Deaning Range	Count	70
10 to 20	1	1.0	10 to 20	1	1.0
10 to 20	1	1.0	10 to 20	1	1.0
20 to 30	2	10.0	20 to 30	0	1.0
40 to 50	10	18.2	30 to 40	3	5.5
50 to 60	10	21.8	50 to 60	1	1.8
60 to 70	6	10.9	60 to 70	0	0.0
70 to 80	11	20.0	70 to 80	0	0.0
80 to 90	7	12.7	80 to 90	1	1.8
001000	,	12.7	90 to 100	1	1.0
			100 to 110	2	3.6
			110 to 120	-	1.8
			120 to 130	0	0.0
			130 to 140	1	1.8
			140 to 150	1	1.8
			150 to 160	0	0.0
			160 to 170	0	0.0
			170 to 180	1	1.8
			180 to 190	1	1.8
			190 to 200	1	1.8
			200 to 210	2	3.6
			210 to 220	3	5.5
			220 to 230	3	5.5
			230 to 240	4	7.3
			240 to 250	0	0.0
			250 to 260	1	1.8
			260 to 270	4	7.3
			270 to 280	2	3.6
			280 to 290	4	7.3
			290 to 300	5	9.1
			300 to 310	9	16.4
			310 to 320	1	1.8
			320 to 330	0	0.0
			330 to 340	0	0.0
			340 to 350	1	1.8
			350 to 360	0	0.0

Figure 8 BH16-01 fractures dip angles histogram

Figure 7 BH16-01fractures dip direction data rose diagram

Figure 9 BH16-01fractures dip directions histogram

Fracture plane - open, Fracture plane - partially open, Fracture plane - discontinuous In Bore: BH16-01 In Rock Type:All. From 15.845 to 112.112m

Appendix 1

Appendix 1 1:20 Interpretation logs – 15.50 to 113.11 mbgl

Groundsearch Australia	18
BH16-01ATV.doc	

GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)

BH16-01 ATV 1:20

COMPANY	:	COFFEY GEOTECHNICS		C	OTHER SERVICES:	UTM-E	: N/A
WELL	:	BH16-01 ATV 1:20			CAMERA	UTM-N	: N/A
LOCATION/FIELD	:	MBROOK HOSPITAL			TV		
COUNTY	:	AUST					
LOCATION	:	N/A/V					
SECTION	:	N/A	TOWNSHIP	:	N/A	RANGE	: N/A
DATE	:	07/13/16	PERMANENT DATUM	:	GL		
DEPTH DRILLER	:	110				KB	: N/A
LOG BOTTOM	:	113.110	LOG MEASURED FROM	:	N/A	DF	: N/A
LOG TOP	:	15.500	DRL MEASURED FROM	:	N/A	GL	: N/A
CASING DIAMETER	:	10.		:	102		
CASING TYPE	:		FIELD OFFICE	:	RUTHERFORD		
CASING THICKNESS	S:	.5	RECORDED BY	:	A DAVIS		
BIT SIZE	:	9.6	BOREHOLE FLUID	:	0	FILE	: PROCESSED
MAGNETIC DECL.	:	0	RM	:	0	TYPE	: 9804A
MATRIX DENSITY	:	2.65	RM TEMPERATURE	:	0	LGDATI	E: (07/13/16
NEUTRON MATRIX	:	SANDSTONE	MATRIX DELTA T	:	177	LGTIME	E : 115:26
						THRES	H: 99999
		NO SURFACE CASING					
		BLOCKAGE AT 83M					

Coffey Geotechnics

Borehole BH16-03

ACOUSTIC TELEVIEWER PETROPHYSICAL REPORT

Groundsearch Australia Pty. Limited

15 July 2016

1

Groundsearch	Australia
BH16-03AT	V.doc

DISCLAIMER

The data used in this report were obtained using equipment manufactured by the Century Geophysical Corporation. The interpretations given in this report are based on judgement and experience of Groundsearch Australia's personnel. They are provided for Coffey Geotechnics sole use in accordance with a specified brief. As such, the interpretation outcomes do not necessarily address all aspects of ground conditions and behaviour on the subject site. The responsibility of Groundsearch Australia is solely to Coffey Geotechnics and it is not intended that any third party rely upon this report. This report shall not be reproduced either wholly or in part without the written permission of Groundsearch Australia Pty. Limited.

For and on behalf of Groundsearch Australia Pty. Limited

10-

John Lea BSc (Hons) FAusIMM MMICA MAIMVA (CPA) Principal Geologist Managing Director

Executive summary

The data contained in this report were obtained from one 9.6cm diameter, vertical, noncored borehole that was drilled as a component of the 2016 geotechnical exploration programme for Coffey Geotechnics Muswellbrook Hospital Project.

Century Geophysical Corporation downhole 9804 acoustic televiewer and 9329 density tools were run to collect data in the field on 13 July 2016 and 23 June 2016 respectively. The density run was through drill rods and the data corrected to reflect openhole conditions. This report is for data from 14.50 to 82.12 mbgl.

The borehole wall sonic data appear to be affected by rugosity caused by the drilling method used.

The 92 identified features are interpreted as bedding (83%), fractures, washouts, the SWL and top of the abandoned coal workings. The bedding to fractures ratio is 15:1. The coal contains some high angle features that are probably cleats.

The Century Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data is referenced to magnetic north.

	Page #
Disclaimer	2
Executive Summary	3
1.0 Background Technical Information 2.0 Interpretation Methodology 3.0 Borehole BH16-03Interpretation	5 5 7
List of Tables	Page
Table 1 Interpreted features report for BH16-03 Table 2 BH16-03bedding histogram data Table 3 BH16-03fracture histogram data	7 - 9 12 13
List of Figures	Page
Figure 1 BH16-03circular graphical representation of interpreted features Figure 2 BH16-03features dip angle data distribution Figure 3 BH16-03features dip direction data distribution Figure 4 BH16-03bedding dip direction data rose diagram Figure 5 BH16-03bedding dip angle histogram Figure 6 BH16-03bedding dip direction histogram Figure 7 BH16-03fracture dip direction data rose diagram	10 11 12 12 12 12 13
Figure 8 BH16-03fracture dip angle data distribution Figure 9 BH16-03fracture dip direction data distribution	13 13

Appendix 1 1:20 Interpretation logs – 14.50 to 82.12 mbgl

1.0 Background technical information

The data contained in this report were obtained from one 9.6cm diameter, vertical, noncored borehole that was drilled as a component of the 2016 geotechnical exploration programme for Coffey Geotechnics Muswellbrook Hospital Project.

Century Geophysical Corporation downhole 9804 acoustic televiewer and 9329 density tools were run to collect data in the field on 13 July 2016 and 23 June 2016 respectively. The density run was through drill rods and the data corrected to reflect openhole conditions. This report is for data from 14.50 to 82.12 mbgl.

The borehole wall sonic data appear to be affected by rugosity caused by the drilling method used.

The 92 identified features are interpreted as bedding (83%), fractures, washouts, the SWL and top of the abandoned coal workings. The bedding to fractures ratio is 15:1. The coal contains some high angle features that are probably cleats.

The Century Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data is referenced to magnetic north.

The Century Display program has automatically recalculated the dip angle data to represent the borehole in the vertical position and the dip direction data is referenced to magnetic north.

Subsequent processing and interpretation of data were carried out by Groundsearch.

The ATV takes an oriented image of the borehole using high-resolution sound waves. This acoustic image is displays amplitude variations. This information is used to detect bedding planes, fractures, and other borehole anomalies without the need to have clear fluid filling the boreholes. The tool works only in fluid-filled boreholes.

The televiewer digitises 256 measurements around the borehole at each high-resolution sample interval. These data can be oriented to North and displayed real-time while logging using the Visual Compu-Log System.

Analysis software includes colour adjustment, fracture dip and strike determination, and classification of features. It allows information to be displayed on the graphical screen, plot, and in report format.

2.0 Interpretation methodology

It should be noted that the ATV is a bowspring-type, centralised tool and is affected by poor wallrock conditions known as rugosity.

The ATV data interpretation procedure is based on the superposition of curves on feature logs directly onto the computer screen by using a subjective, manual; two-point definition of a feature's top and base to produce a sine curve. The sides of the time and

Groundsearch Australia	5
BH16-03ATV.doc	

amplitude plots represent magnetic north and magnetic south is in the centre of each plot. The low side, or trough, of the sine curve defines the dip direction of the feature.

The logging program automatically records the televiewer tool slant angle and bearing and corrects for any borehole deviations. The curves are automatically given an identification number for subsequent referencing in a report file.

There are possibly more bedding planes and structural fractures appearing in the televiewer logs that have not been included in this report due to their poor graphic definition or the inability to resolve their geometry by superposing a sine curve using the program's two point method.

This report contains a;

- Text summary of the interpreted features
- Circular representation of interpreted features
- Logs that show geological features with their subjective, numbered interpretation curves shown at 1:20 scale. The logs are in standard format whereby the optical image of the borehole wall is "flattened" onto the plot. The logs have the following additional features to enhance geological interpretations of the strata;
 - Amplitude image differentials
 - Tadpoles that represent feature dip and dip direction
 - Open fracture planes in **RED**
 - Partially open fractures in **MAGENTA**
 - Natural gamma
 - Slant (dip angle)
 - Slant angle bearing
 - Long and short space density
- Table containing feature curve ID, top, base, dip angle, dip azimuth, feature description and the generalised rock type that hosts the feature
- Graphical representations of the interpreted features

3.0 Borehole BH16-03interpretation

The borehole wall sonic data appear to be affected by rugosity caused by the drilling method used.

The 92 identified features are interpreted as bedding (83%), fractures, washouts, the SWL and top of the abandoned coal workings. The bedding to fractures ratio is 15:1. The coal contains some high angle features that are probably cleats.

A description of each interpreted feature is presented in Table 1 and the log is presented in Appendix 1.

סו	(DEG)	(DFG)	(MBGL)	TOP (M)	BASE (M)	TYPE OF FFATURE	GENERALISED
1	3	248	15.03	15.03	15.03	SWI	Overburden
2	5	266	16.00	16.00	16.00	Bedding plane	Overburden
3	32	187	16.66	16.63	16.69	Fracture plane - open	Overburden
4	14	252	17.01	17.00	17.02	Bedding plane	Overburden
5	21	318	20.40	20.38	20.42	Bedding plane	Overburden
6	20	212	19.95	19.93	19.97	Bedding plane	Overburden
7	20	290	20.32	20.30	20.33	Bedding plane	Overburden
8	20	167	23.73	23.72	23.75	Fracture plane - open	Overburden
9	16	137	25.14	25.13	25.16	Top of washout	Overburden
10	0	90	25.22	25.22	25.22	Base of washout	Overburden
11	12	209	26.72	26.71	26.73	Bedding plane	Overburden
12	27	89	36.39	36.36	36.41	Fracture plane - open	Overburden
13	21	162	37.05	37.03	37.07	Top of washout	Overburden
14	22	139	37.18	37.16	37.20	Base of washout	Overburden
15	5	287	38.80	38.79	38.80	Bedding plane	Overburden
16	28	243	41.08	41.06	41.11	Top of washout	Overburden
17	37	301	41.27	41.23	41.31	Base of washout	Overburden
18	7	283	41.69	41.68	41.70	Top of washout	Overburden
19	22	151	41.76	41.74	41.78	Base of washout	Overburden
20	5	298	42.47	42.47	42.48	Bedding plane	Overburden
21	10	258	43.42	43.41	43.42	Bedding plane	Overburden
22	2	107	43.84	43.84	43.84	Bedding plane	Overburden
23	5	287	44.42	44.41	44.42	Bedding plane	Overburden
24	9	250	50.17	50.16	50.18	Bedding plane	Overburden
25	8	260	54.91	54.90	54.92	Bedding plane	Overburden
26	7	236	56.78	56.77	56.78	Bedding plane	Overburden
27	9	285	56.91	56.90	56.92	Bedding plane	Overburden
28	2	114	57.30	57.30	57.30	Bedding plane	Overburden
29	9	215	57.37	57.36	57.38	Bedding plane	Overburden
30	5	264	57.91	57.91	57.91	Bedding plane	Overburden
31	2	249	58.21	58.21	58.22	Bedding plane	Overburden

Table 1 Interpreted features report for BH16-03

Groundsearch Australia BH16-03ATV.doc 7

			С	offey Geot	echnics		
		Borehole	e BH16-03 Ac	oustic Tele	viewer Pet	trophysical Report	
32	3	282	58.33	58.33	58.33	Bedding plane	Overburden
33	7	258	58.47	58.46	58.47	Bedding plane	Overburden
34	12	297	58.57	58.56	58.58	Bedding plane	Overburden
35	7	269	58.85	58.85	58.86	Bedding plane	Overburden
36	7	257	59.75	59.74	59.75	Bedding plane	Overburden
37	7	255	59.82	59.81	59.83	Bedding plane	Overburden
38	5	250	61.67	61.67	61.68	Bedding plane	Overburden
39	7	258	62.65	62.65	62.66	Bedding plane	Overburden
40	7	219	62.84	62.84	62.85	Bedding plane	Overburden
41	5	226	63.39	63.39	63.40	Bedding plane	Overburden
42	7	166	63.47	63.46	63.47	Bedding plane	Overburden
43	16	149	63.57	63.56	63.58	Bedding plane	Overburden
44	9	141	63.59	63.58	63.60	Bedding plane	Overburden
45	2	264	63.89	63.89	63.89	Bedding plane	Overburden
46	7	53	64.50	64.49	64.50	Bedding plane	Overburden
47	2	43	64.57	64.56	64.57	Bedding plane	Overburden
48	5	69	64.59	64.58	64.59	Bedding plane	Overburden
49	2	81	64.61	64.61	64.62	Bedding plane	Overburden
50	5	266	64.82	64.81	64.82	Top of coal unit	COAL SEAM
51	10	335	64.97	64.96	64.98	Bedding plane	COAL SEAM
52	12	252	65.09	65.08	65.10	Bedding plane	COAL SEAM
53	7	223	65.51	65.50	65.52	Base of coal unit	COAL SEAM
54	5	225	66.18	66.18	66.18	Bedding plane	Interburden
55	7	227	66.23	66.23	66.24	Bedding plane	Interburden
56	0	90	66.26	66.26	66.26	Bedding plane	Interburden
57	2	43	68.47	68.47	68.47	Bedding plane	Interburden
58	5	270	68.60	68.60	68.61	Bedding plane	Interburden
59	5	225	68.81	68.81	68.81	Bedding plane	Interburden
60	5	223	68.89	68.89	68.90	Bedding plane	Interburden
61	0	90	69.33	69.33	69.33	Bedding plane	Interburden
62	0	90	69.93	69.93	69.93	Bedding plane	Interburden
63	3	265	70.29	70.29	70.29	Bedding plane	Interburden
64	2	243	70.51	70.51	70.52	Bedding plane	Interburden
65	2	84	70.70	70.70	70.70	Bedding plane	Interburden
66	7	258	70.89	70.89	70.90	Bedding plane	Interburden
67	11	326	71.00	70.99	71.01	Bedding plane	Interburden
68	5	277	71.73	71.73	71.73	Bedding plane	Interburden
69	7	324	71.88	71.88	71.89	Bedding plane	Interburden
70	5	249	72.61	72.61	72.62	Bedding plane	Interburden
71	5	319	72.85	72.85	72.86	Bedding plane	Interburden
72	7	257	73.08	73.08	73.09	Bedding plane	Interburden
73	7	220	73.19	73.19	73.20	Bedding plane	Interburden
74	5	334	73.71	73.71	73.72	Bedding plane	Interburden
75	8	170	75.21	75.21	75.22	Top of washout	Interburden
76	5	275	75.41	75.40	75.41	Base of washout	Interburden
77	5	274	75.67	75.67	75.68	Bedding plane	Interburden
			Grou	ndsearch A	Australia		8

	Coffey Geotechnics Borehole BH16-03 Acoustic Televiewer Petrophysical Report							
78	0	304	75.73	75.73	75.73	Bedding plane	Interburden	
79	2	146	77.05	77.05	77.06	Bedding plane	Interburden	
80	4	263	77.28	77.27	77.28	Bedding plane	Interburden	
81	8	239	78.04	78.03	78.04	Bedding plane	Interburden	
82	2	100	79.24	79.23	79.24	Bedding plane	Interburden	
83	10	279	79.43	79.43	79.44	Bedding plane	Interburden	
84	10	250	80.16	80.15	80.16	Bedding plane	Interburden	
85	2	263	80.94	80.94	80.94	Bedding plane	Interburden	
86	57	291	81.02	80.95	81.09	Fracture plane - partially open	Interburden	
87	54	315	81.06	81.00	81.13	Fracture plane - partially open	Interburden	
88	5	249	81.08	81.08	81.09	Bedding plane	Interburden	
89	3	280	81.32	81.32	81.32	Bedding plane	Interburden	
90	5	296	81.41	81.40	81.41	Bedding plane	Interburden	
91	2	243	81.74	81.74	81.75	Bedding plane	Interburden	
92 FEATURE	12 DIP	223 AZIMUTH	81.84 MIDPOINT	81.83 TOP	81.85 BASE	Bedding plane	Interburden GENERALISED	
ID	(DEG)	(DEG)	(MBGL)	(M)	(M)	FEATURE	ROCK TYPE	

Groundsearch Australia	ç
BH16-03ATV.doc	

Figure 1 BH16-03 circular plan representation of interpreted features

The 76 identified sedimentary features are predominantly bedding planes that appear to range in dip from flat-lying to 21° . Figures 2 and 3 show the distribution of the planes' dip angles and dip direction with depth.

Table 2 details the variation in the dip angle and dip direction data. Figure 4 shows the dip direction data in a rose diagram with the bedding planes' dip angle and dip direction data shown as histograms in Figures 5 and 6.

The five fractures are identified has as three open and two partially open.

Table 3 details the variation in the fractures' dip angle and dip direction data. Figure 7 shows the dip direction data in a rose diagram with the fractures' plane dip angle and dip direction data as histograms in Figures 8 and 9.

Groundsearch Au	ustralia	I
BH16-03ATV.	doc	

Figure 2 BH16-03feature dip angle data distribution

Figure 3 BH16-03feature dip direction data distribution

Groundsearch Australia

BH16-03ATV.doc

Table 2 BH16-03bedding histogram data

	Dip Distribution		Orie	ntation Distributi	on
Din Range	Count	%	Rearing Range	Count	%
0 to 10	65	85.5	0 to 10	0	00
10 to 20	8	10.5	10 to 20	Õ	0.0
20 to 30	3	3.9	20 to 30	Ő	0.0
30 to 40	0	0.0	30 to 40	õ	0.0
40 to 50	0	0.0	40 to 50	2	2.6
50 to 60	0	0.0	50 to 60	1	1.3
60 to 70	0	0.0	60 to 70	1	1.3
70 to 80	0	0.0	70 to 80	0	0.0
80 to 90	0	0.0	80 to 90	2	2.6
			90 to 100	4	5.3
			100 to 110	1	1.3
			110 to 120	1	1.3
			120 to 130	0	0.0
			130 to 140	0	0.0
			140 to 150	3	3.9
			150 to 160	0	0.0
			160 to 170	1	1.3
			170 to 180	0	0.0
			180 to 190	0	0.0
			190 to 200	0	0.0
			200 to 210	1	1.3
			210 to 220	4	5.3
			220 to 230	7	9.2
			230 to 240	2	2.6
			240 to 250	5	6.6
			250 to 260	12	15.8
			260 to 270	9	11.8
			270 to 280	5	6.6
			280 to 290	5	6.6
			290 to 300	3	3.9
			300 to 310	1	1.3
			310 to 320	2	2.6
			320 to 330	2	2.6
			330 to 340	2	2.6
			340 to 350	0	0.0
			350 to 360	0	0.0

Figure 5 BH16-03bedding dip angles histogram

Figure 4 BH16-03bedding dip direction data rose diagram

Figure 6 BH16-03bedding dip directions histogram

Top of Coal Unit, Bedding Plane, Base of Coal Unit In Bore: BH16-03

Table 3 BH16-03 fractures histogram data

		1010100	motogram	aata	
	Dip Distribution		Orie	entation Distribut	ion
	Total: 5			Total: 5	
Dip Range	Count	%	Bearing Range	Count	%
0 to 10	0	0.0	0 to 10	0	0.0
10 to 20	0	0.0	10 to 20	0	0.0
20 to 30	2	40.0	20 to 30	0	0.0
30 to 40	1	20.0	30 to 40	0	0.0
40 to 50	0	0.0	40 to 50	0	0.0
50 to 60	2	40.0	50 to 60	0	0.0
60 to 70	0	0.0	60 to 70	0	0.0
70 to 80	0	0.0	70 to 80	0	0.0
80 to 90	0	0.0	80 to 90	1	20.0
			90 to 100	0	0.0
			100 to 110	0	0.0
			110 to 120	0	0.0
			120 to 130	0	0.0
			130 to 140	0	0.0
			140 to 150	0	0.0
			150 to 160	0	0.0
			160 to 170	1	20.0
			170 to 180	0	0.0
			180 to 190	1	20.0
			190 to 200	0	0.0
			200 to 210	0	0.0
			210 to 220	0	0.0
			220 to 230	0	0.0
			230 to 240	0	0.0
			240 to 250	0	0.0
			250 to 260	0	0.0
			200 to 270	0	0.0
			270 to 200	0	0.0
			200 to 200	1	20.0
			290 to 300	0	20.0
			310 to 320	1	20.0
			320 to 320	0	20.0
			320 to 340	0	0.0
			340 to 350	õ	0.0
			350 to 360	0	0.0
			000 10 000	0	0.0

Figure 8 BH16-03 fractures dip angles histogram

Figure 7 BH16-03fractures dip direction data rose diagram

Total Observations: 5 Maximum Count: 1

Figure 9 BH16-03fractures dip directions histogram

Fracture plane - open, Fracture plane - partially open In Bore: BH16-03 In Rock Type:All. From 15.025 to 81.852m

Appendix 1

Appendix 1 1:20 Interpretation logs – 14.50 to 82.12 mbgl

Groundsearch Australia	14
BH16-03ATV.doc	

GROUNDSEARCH AUSTRALIA (ABN 11 057 389 152)

BH16-03 ATV 1:20

COMPANY	: COFFEY GEOTECHNICS		OTHER SERVICES:	UTM-E	: N/A		
WELL	: BH16-03 ATV 1:20		CAMERA	UTM-N	: N/A		
LOCATION/FIELD	: MBROOK HOSPITAL		TV				
COUNTY	: AUST						
LOCATION	: N/AN	l					
SECTION	: N/A	TOWNSHIP	: N/A	RANGE	: N/A		
DATE	: 07/13/16	PERMANENT DATUM	GL				
DEPTH DRILLER	: 110			KB	: N/A		
LOG BOTTOM	: 82.120	LOG MEASURED FROM	: N/A	DF	: N/A		
LOG TOP	: 14.500	DRL MEASURED FROM	: N/A	GL	: N/A		
CASING DIAMETER	: 10.	LOGGING UNIT	102				
CASING TYPE		FIELD OFFICE	RUTHERFORD				
CASING THICKNESS	: .5	RECORDED BY	A DAVIS				
	. 0.6						
	. 9.0				PROCESSED		
	: 0		. 0	ITPE	: 9604A		
	2.65	RM TEMPERATURE	: 0	LGDATE	:: (0//13/16		
NEUTRON MATRIX	: SANDSTONE	MATRIX DELTA I	: 1//	LGTIME	: 114:14		
				THRESP	4: 99999		
	NO SURFACE CASING						
	BLOCKAGE AT 83M						
ALL SERVICES PROVIDED SUBJECT TO STANDARD TERMS AND CONDITIONS							

